Composite Layout

- Drawing the mask layers that will be used by the fabrication folks to make the devices
 - Very different from schematics
 - In schematics you're describing the LOGICAL connections
 - In layout, you're describing the PHYSICAL placement of everything!
 - Use colored regions to define the different layers that are patterned onto the silicon

N-type Transistor

- Top view shows patterns that make up the transistor

Diffusion Mask

- Mask for just the diffused regions

Polysilicon Mask

- Mask for just the polysilicon areas
Diffused (active) mask is actually drawn as a solid rectangle.

Polysilicon mask goes on top of the active.

You get an N-type transistor.

Same type of masks as the N-type.

Note that the general substrate is P-type.

The N-substrate for the P-transistor is in a "well".

There are lots of other layers.

Thick SiO2 oxide ("field oxide").

Thin SiO2 oxide ("gate oxide").

Metal for interconnect.

But, you have to get the substrate right.

and you have to dope the diffusion differently.

There are other steps in the process…

General CMOS cross section.

Cutaway Photo.
A Cutaway View

- CMOS structure with both transistor types, and top-view structure

Top View from that Section

- Note the different mask layers that correspond to the different transistor layers
 - In particular, note the N-well and P-select layers

This is an Inverter

- Layout in Cadence
 - Each color corresponds to a mask layer
 - Draw rectangles to describe mask regions
 - A LOT of things to keep in mind
 - connectivity, functionality, design rules

What are the layers?

- Metal3
- Metal2
- Metal1
- CC, Via, Via2
- Polysilicon (Poly)
- Nselect, Pselect
- Nactive, Pactive
- Nwell

What are the layers?

- Metal3
- Via2
- Metal2
- Via
- Metal1
- CC
- Polysilicon (Poly)
- Nselect, Pselect
- Nactive, Pactive
- Nwell
Let's walk through drawing this inverter. You can draw layers in whatever order makes sense to you…

Layout Basics
- Where **poly** crosses **active** = transistor
 - For N-type, **nactive** over the substrate (p substrate)
 - For P-type, **pactive** inside an Nwell
- There's really only one “active” mask
 - nselect and pselect layers define active types
 - Our setup has separate **nactive** and **pactive** colors to help keep things straight.

First Layout the Power Rails
- Power rail pitch is important
 - Allows cells to connect by abutment
 - Also add the N-well for the P-type transistor

Now add Diffusion
- Note the M1 contacts in the diffusion
- Diffusion by itself will be N-type
- Diffusion in an N-well will be P-type
 - Or will it? The well just defines the substrate type
Add the Select Regions
- Nselect defines N-type diffusion
- Pselect defines P-type diffusion

Now add the Poly Gates
- Remember: crossing diffusion with Poly makes a transistor
- The type of the diffusion, and the type of well, define what kind of transistor

Note the Metal1 Connections
- Overlapping boxes of the same type of material make a connection
- Overlaps of different types of material need a contact cut of some sort

Connect the Gates
- Connect gates together to form the inverter
- Note contact cuts and metal overlaps

Layout Subtlety
- We currently think of transistors as three-terminal devices
 - Gate, Source, Drain
- They're really four-terminal devices
 - There's also a connection to the substrate
- It's important to tie the substrate to a specific voltage
 - GND for the P-substrate
 - VDD for the N-well
 - Make sure PN-diodes from active to substrate and well are reverse-biased...

Well (or Substrate) Contacts
- Connect P-substrate to GND (VSS) with a little stub of P-type diffusion (remember pselect)
- Connect the N-well to VDD with a little stub of N-type diffusion
 - I.e. inside the N-well, but with nselect
Layout Design Rules

- Define the allowed geometry of the different layers
- Guidelines for making safe process masks
- Rules about the allowed sizes and shapes of a particular layer
- Rules about how different layers interact
- Dimensions listed in one of two ways
 - Absolute dimensions (i.e. microns)
 - Scalable dimensions in abstract units
 - Usually called “lambda”
 - Design in lambda units, then scale lambda for a particular process

Intra-Layer Rules (Lambda)

- Same Potential
- Different Potential

Intra-Layer Rules (Native)

- Dimensions are directly in microns
- Some things scale uniformly, others don’t
- Native rules are generally more dense

Transistor Layout

- Measurements are in microns based on scalable rules and a lambda of 0.3.

Vias and Contacts

- Use Design Rule Checking (DRC) to see if everything is OK

Look at Inverter Layout Again

- Lots and lots of design rules to consider!
On the class web page
Modiﬁed version of the MOSIS SCMOS Rev. 8 rules
 - Modiﬁed to show both Lambda and Micron dimensions
 - All our design will be done in microns
 - Because of the NCSU tech ﬁles
 - But, even though we’re using microns, we’re using the SCMOS Lambda rules…
 - Print them out in color if possible!

SCMOS Nwell

SCMOS Poly

SCMOS Active (diffusion)

SCMOS Select

SCMOS Contacts
First Layout: Follow Schematic

- Note that layout of transistors follows the schematic
 - Two P-types in series pulling up
 - Two N-types in parallel pulling down

Another Layout: Better?

- Same four transistors
 - But, organized a little differently
 - And sized a little differently

Use Shared Source/Drain

Another Shared S/D
We'll get into the details later…

Consider a transistor’s Width and Length

- Current capability is proportional to $\frac{W}{L}$
- Length is almost always minimum allowed
- Change width to change current capability

Sizing Rule of Thumb

- Also, P-type is about twice as bad as N-type
 - Has to do with hole mobility vs. electron mobility
- So, make P-types twice as wide as N-types to start with
- Unit size for transistors this semester
 - N-type 1.5μ (contact pitch is 1.2μ)
 - P-type 3μ

Now multiply each width by n for a series stack of n transistors.

- Stack of 2 in series, each transistor should be 2x unit size
- Stack of 3 in series, each transistor should be 3x unit size

This is because series connections are like increasing the L of the device…

- Current is proportional to $\frac{W}{L}$

For example:

- Notice the difference in width…
- This roughly equalizes the current sourcing capability of pull-up and pull-down stacks in this gate