Ball and Beam

Objectives

The objective of this lab is to gain experience in the design of control
algorithms, taking the ball and beam system as an example. Using
an animation program in Matlab, the challenges of controlling the
system manually will be observed. Next, a proportional-derivative
controller will be designed and evaluated.

Introduction

The ball and beam system is an educational experiment that is fun to watch and play with. A
diagram is shown in Fig. 1. A beam is attached to a motor so that its angle # with respect to
the horizontal can be controlled at will. A ball is placed on the beam and is free to roll under
the action of gravity (a small channel in the beam may keep the ball from rolling sideways).
The distance of the ball from the center of the beam is denoted x. The ball can be placed at
any location on the beam, and will stay there if its velocity v is zero and the beam angle is
zZero.

Figure 1: Ball and Beam System

Assuming that the only force acting on the ball is gravity, the movement of the ball is
determined by Newton’s law
d*x

M-y ==y sin(0) (1)

where ¢ is the acceleration of gravity and m is the mass of the ball. A more careful analysis
shows that the rotational inertia of the ball adds itself to the translational inertia, resulting
in a factor of 5/71in the right-hand side of the equation of motion. The resulting state-space



model of the ball and beam system is then

a
dv 5 .
- = —?gsm(ﬁ). (2)

where x is the position of the ball and vis its velocity. In order to apply linear control theory,
one assumes that the angle 6 is small and one replaces sin(f) by 0. The transfer function of

the system is then
X

P(s) = @((;) = g, where k = —gg (3)
The transfer function is the so-called double integrator, which is often encountered in control
applications. Newton’s law, F' = m.a, generally yields this transfer function if force is the
control variable and position is the output variable. Moving a spacecraft with thrusters is a
practical example of such a system. Note that the model of the ball and beam system is only
approximate. Also, a laboratory testbed may only permit to specify the torque of the motor,
rather than its position. The model for such a system will have four states, instead of two.
Nevertheless, the simplified model (3) exhibits the most interesting part of the dynamics of
the ball and beam system, and is tractable for manual control.

Real-time simulation and visualization

The real-time simulation comes in the form of a Matlab macro (m-file). Visualization is
provided through a Matlab figure, and a joystick is used for manual control. The file bbeam.m
contains the m-file with the simulation of the system. A file called jstick.dll must be placed
in the working directory of Matlab to provide readings of the joystick commands. It may
be necessary to first calibrate the joystick by clicking on Start/Settings/Control Panel/Game
Controllers. After calibration, typing ref=jstick in Matlab returns a Matlab variable ref with
value between -1 (full left) and 1 (full right). Please contact the instructor if you want to work
on the labs at home, and have trouble using the joystick function.

The model of the ball and beam system is implemented in bbeam.m using an Euler approx-
imation

x(i) = z(i—1)+dt-v(i—1)
o(i) = v(i—1)+dt-(—ggsin(H(i—l)) (@)

where ¢ is the time instant and dt is the sampling period. The sampling period is set to 0.05s,
or a frequency of 20Hz. Timing is obtained in Matlab using the tic and toc commands. The
sampling period is close to the resolution of these commands, so that the joystick input and the
visualization do not occur at exactly 20Hz. However, deviations are not normally noticeable.

Visualization is provided in a window using Matlab graphic functions. The window is
scaled so that the unit lengths of the x and y axes are identical on the computer screen used



to develop the labs. It may be necessary to adjust the window size to your own computer, and
information is given in the code about the parameters that may need to be modified.

The simulation program gives the option of manual control or automatic control. Manual
control is immediately available. For automatic control, two m-files must be written: a file called
bbeamc.m containing the control algorithm, and an initialization file called bbeamcinit.m. The
initialization file is called once before the simulation starts, while the control algorithm is called
at the same rate as the ball and beam simulation. As provided, the program does not store
the time histories of the signals. You will need to define arrays in the initialization macro, and
store relevant variables in the control macro in order to plot the results of your experiments.

The control signal is the angle of the beam (called theta in the code), and is limited to
+5 degrees. Measured variables are the position of the ball (called zball in the code) and the
velocity of the ball (called vball in the code). The variable ¢ in the code gives the time. In the
simulation program, the position of the ball is limited to the length of the beam (£0.4m) by
setting the velocity to zero when the end of the beam is reached. Friction of the ball rolling on
the beam is simulated by setting the velocity to zero if the ball velocity and the beam angle
are small enough.

Manual control

The animation program is a good opportunity to have fun and get a sense for the challenges
of controlling the double integrator. As an objective, try to move the ball from the left line
to the right line as fast as possible. You will notice the importance of accounting for the ball
velocity in your strategy. An automatic controller also needs to use this information. For the
report, explain the challenges of the manual control problem and describe the strategies that
you have developed for control.

Automatic control

The objective of this part of the lab is to develop an automatic controller, and to appreciate
its performance compared to manual control. Choose a proportional-derivative controller, so

that
@

dt’
Assuming that both the ball position and the ball velocity can be measured, and neglecting
dxgpr/dt, the control law may be implemented simply with

szpe—i—kv Withe::cREF—x (5)

0 = kye — k,v (6)

Note that the closed-loop system is a second-order system whose poles can be placed arbitrarily.
Choose the parameters k, and k, so that the two closed-loop poles are real and equal, with an
associated time constant of 0.3 seconds. Explain what would happen if the derivative gain k,
was set to 0.



Implement the control algorithm in the real-time simulation, and generate steps of position
reference alternating between 0.3m and —0.3m every 6 seconds. Plot the responses of x, v, and
0 for 20 seconds. Repeat the experiment with a time constant of 0.2 seconds and explain the

overshoot observed in the responses. Show your code and demonstrate the real-time operation
to the TA.

Report at a glance
Be sure to include:

e Description of challenges and strategies for manual control.

e Description of PD controller and evaluation. Plots of responses with two controller
settings.

e Observations and comments.

e Listing of bbeamc.m and bbeamcinit.m files.



