Use Node-Voltage method to find V_0.

Obvious place to put ref is at bottom of circuit. We know we have 50V at top-left node. Only 2 nodes unknown.

Use the idea of a supernode: currents flowing out of dashed box in above figure sum to zero, and the controlled V-source gives us $V_1 - V_2 = V_A / 5$.

Super-Node 1st: $\frac{V_1 - 50V}{10.2} + \frac{V_1 - 0V}{30.2} + \frac{V_2 - 0V}{39.2} + \frac{V_2 - 0V}{78.2} = 0$ A

$V_1 - V_2 = V_A / 5$ from V-source inside supernode

$-V_4 = V_1 - 50V$ from definition of V_4 on schematic

We have 3 eqns in 3 unknowns. Eliminate V_4. Then find V_2 by eliminating V_1. Why? because we want to find V_0, but $V_0 = V_2$.

Using $-V_4 = V_1 - 50V$ in 2nd eqn: $V_1 - V_2 = \left(\frac{V_1 - 50V}{5}\right)$

$\therefore V_2 = V_1 + \frac{V_1 - 50V}{5} = \frac{6}{5} V_1 - 10V \Rightarrow V_1 = \frac{5}{6} \left(V_2 + 10V\right)$

Plug this into 1st eqn: \(\frac{5}{5} \left(V_2 + 10V\right) \left(\frac{1}{10.2} + \frac{1}{30.2}\right) + \frac{V_2}{39.2} \left(\frac{1}{39.2} + \frac{1}{78.2}\right) = \frac{50V}{10.2}\)

$\therefore \frac{1}{10.2} + \frac{1}{30.2} = \frac{1}{10.2} + \frac{1}{30.2} = \frac{1}{39.2} + \frac{1}{78.2} \Rightarrow \frac{5}{5} \left(V_2 + 10V\right) + \frac{V_2}{3} = 5A$

$V_2 = \left(\frac{5A + 3}{78.2}\right) = \frac{5A - \frac{5\cdot10V}{78.2}}{6.30L} \Rightarrow V_0 = V_2 = \frac{35/9}{(1/2 + 3/78)}$

or $V_0 = 26V$