1. Find and draw the Thevenin equivalent circuit of the circuit below. The load resistor is R_L.

![Thevenin equivalent circuit](image1)

2. a) Find and draw the Thévenin equivalent of the circuit shown.

![Thévenin equivalent circuit](image2)

b) Find the power dissipated in the load using your Thévenin equivalent circuit. $P_{RL} = ?$

3. For the circuit shown at right, use Thevenin's theorem to find the current through the 50 Ω resistor R_4.

![Current through 50 Ω resistor](image3)

4. For each of the following sinusoidal waves, find:
 1) Peak-to-peak voltage or current, V_{pp} or I_{pp}
 2) Amplitude, A (or V_p or I_p)
 3) Period, T
 4) Frequency f in cycles/sec or Hz
 5) An expression for $v(t)$ or $i(t)$ in terms of $A\cos(\omega t + \phi)$
 (The frequency ω is in radians/sec or degrees)

![Sinusoidal waves](image4)
5. For each of the following waveforms, find:
1) Peak-to-peak voltage or current, \(V_{\text{pp}} \) or \(I_{\text{pp}} \)
2) Average, (\(V_{\text{DC}}, I_{\text{DC}}, V_{\text{ave}}, \) or \(I_{\text{ave}} \))
3) Period, \(T \)
4) Frequency \(f \) in cycles/sec or Hz

6. For problem 5a above, write a full expression for \(v(t) \) in terms of \(v(t) = A\cos(\omega t + \phi) + V_{\text{DC}} \)

7. What is special about a "signal".

8. Could any of the waveforms shown in problems 4, 5, and 6 be considered a "signals"? Why?

Answers

1. a) 4.091-V , 28.4-kΩ
 b) 6-V , 112-Ω

2. a) 16-V , 112-Ω

3. a) 0.2-V 0.1-V 12-ms 83.3-Hz 0.1-V-cos(523.6-t)
 b) 24-V 12-V 0.018-ms 55.6-kHz
 c) 16-mA 8-mA 0.3-ms 3333-Hz

 b) 480-mW
 c) 1.88-mA

4. a) 12-V 3-V 6-ms 167-Hz
 b) 12-V 6-V 4-ms 250-Hz
 c) 250-mA 25-mA 0.6-ms 1.667-kHz

5. \(v(t) := 12-V \cdot \cos(349100t - 90\text{-deg}) + 3-V \)

6. \(v(t) := 6-V \cdot \cos(1047t - 90\text{-deg}) + 3-V \)

7. It carries information

8. No, you say why