1. Write the code to make a 3-D lit surface plot (using meshgrid()) with interpolated shading of the following function:
 \[z = \cos(2\pi[3x - 4y]) \quad 0 \leq x \leq 1 \quad 0 \leq y \leq 0.5 \]

2. Add code to make a contour plot (as Figure 2) for the surface in Problem 1.

3. Add appropriate axis and title labels for the Figures 1 and 2 in Problems 1 and 2.

4. The inverse of the following rotation matrix, \(R_1 \), should be the same matrix but with \(-\theta\) substituted for \(\theta \):
 \[
 R_1 = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{bmatrix}
 \]
 a) Create \(R_1^{\text{inv}} \) by substituting \(-\theta\) for \(\theta \) in \(R_1 \) and simplifying the terms using \(\cos(-\theta) = \cos(\theta) \) and \(\sin(-\theta) = -\sin(\theta) \).
 b) Verify by hand that \(R_1 \times R_1^{\text{inv}} \) equals the identity matrix.
 c) Which of the following Matlab® command lines could represent a rotation of an initial vector by +30 degrees and then -60 degrees?
 i) \(\gg [1, 0] * [\sqrt{3}/2, 1/2; -1/2, \sqrt{3}/2] * [\sqrt{3}/2, 1/2; -1/2, \sqrt{3}/2]^{-2} \)
 ii) \(\gg [1/2, \sqrt{3}/2; -\sqrt{3}/2, 1/2] * [\sqrt{3}/2, -1/2; 1/2, \sqrt{3}/2] * [1; 0] \)
 iii) \(\gg 1./[\sqrt{3}/2, -1/2; 1/2, \sqrt{3}/2]^2 * [\sqrt{3}/2, -1/2; 1/2, \sqrt{3}/2] * [1; 0] \)

5. Write code to use a matrix, a vector, and the inv() function to solve each of the following sets of simultaneous equations:
 a) \(x + 2y = 1 \)
 \(3x + 5y = -1 \)
 b) \(z = 4 \)
 \(-x + z = -2 \)
 \(\frac{1}{2}y - z = 1 \)

6. When using the Matlab® command for a pseudoinverse (that is used to solve least-squares problems involving rectangular matrices), what is the shape of the resulting matrix? (Hint: use the index of the Matlab Primer to look up pseudoinverse.)
7. Use the following array definitions for the question below:

 \[A = \text{magic}(2) = [1,3;4,2]; \quad B = \text{eye}(2); \quad C = [1,2;3,5]; \]

 What is the result of the evaluation of each of the following logical expressions in Matlab®?
 a) \[A == B \]
 b) \[\text{all}(C - B > 0) \]
 c) \[C <= A \]
 d) \[A == B \quad \& \quad C <= A \]

8. Write Matlab® code that uses polyfit() to find linear and quadratic fits for the following data points. Store the coefficients in an array called \(a \) in each case.

 \[
 \begin{array}{c|cccc}
 x \text{ values} & 0 & 1 & 2 & 3 \\
 y \text{ values} & 1 & 2 & 3 & 6 \\
 \end{array}
 \]

9. Write a script file that plots the data for Problem 8 and superimposes a plot of the linear and quadratic fits from Problem 8. Hint: for the linear and quadratic fits, use \(x \) values from the data and create \(y \) values using the \(a \) arrays.

10. Write a single script file to do the following tasks (in sequence) for a predefined square matrix, \(A \):
 a) Compute \(d = \) determinant of \(A \)
 b) If \(d \) is negative, display a warning message and return to parent program
 c) Otherwise, compute the inverse of \(A \) and
 d) Display the value of the inverse of \(A \)