<table>
<thead>
<tr>
<th>Wk</th>
<th>Lect #</th>
<th>Date</th>
<th>Lecture Topic</th>
<th>Reading</th>
<th>Lecture/Notes</th>
<th>CTools</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>M 7</td>
<td>Introduction, Systems in radio-controlled car.</td>
<td>Ch. 1, 2.1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>W 9</td>
<td>Basic electrical units & symbols, Kirchhoff's laws.</td>
<td>2.5-7, 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>F 11</td>
<td>Resistance, Ohm's law, Power, Resistors in parallel & series.</td>
<td>2.11-12, 3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>M 14</td>
<td>Nodes, Grounds, Branches, Meters, Voltage and current dividers.</td>
<td>2.10, 2.13-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>W 16</td>
<td>I vs V curves of, sources, resistors, bulbs, and diodes. Thevenin. Max pwr xfer</td>
<td>3.2, 2.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>F 18</td>
<td>Thevenin examples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab 1</td>
<td></td>
<td></td>
<td>Introduction to lab, procedures, basic equipment. Measure I-V curves of devices.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>W 23</td>
<td>Intro to AC and time-varying v(t) & i(f). Concept of signal. Sinusoids. Fourier.</td>
<td>2.20, 3.8</td>
<td></td>
<td>Fourier Series</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>F 25</td>
<td>Power transmission, Transformer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab 2</td>
<td></td>
<td></td>
<td>Measurements of I and V for RC car battery. Create model of the car's battery.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>M 28</td>
<td>PWM duty cycle and power, AM, FM</td>
<td>2.23, C.8, C.9</td>
<td></td>
<td>A/D Converters</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>W 30</td>
<td>A/D conversion, Capacitors</td>
<td>2.34</td>
<td></td>
<td>RLC Circuits</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>F 1</td>
<td>Exam 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab 3</td>
<td></td>
<td></td>
<td>Learn about oscilloscope. Motor drive control RC car. PWM circ. with func gen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>M 4</td>
<td>RC Circuits. First-order transients.</td>
<td>Ch 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>W 6</td>
<td>Op amps</td>
<td>Ch 7</td>
<td>Notes: Op Amps</td>
<td>Op-Amps</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>F 8</td>
<td>Op amps and the PWM circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab 4a</td>
<td></td>
<td></td>
<td>Make PWM circuit with op-amps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>M 11</td>
<td>Op amps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>W 13</td>
<td>Introduction to block diagrams, feedback</td>
<td>13.1-4</td>
<td>Notes: Systems</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>F 15</td>
<td>Exam 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab 4b</td>
<td></td>
<td></td>
<td>Model PWM circuit in PSpice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>M 18</td>
<td>PRESIDENTS' DAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>W 20</td>
<td>Feedback control, esp. as it relates to steering position control of the car.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>F 22</td>
<td>Stability and Performance of Control Systems.</td>
<td>Ch 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab 5</td>
<td></td>
<td></td>
<td>Steering position control. Pots as sensors. Measure system response of servo.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>M 25</td>
<td>Introduction to digital circuits, esp. related to encoding and decoding RC signals</td>
<td>Ch 12</td>
<td>Notes: Digital</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>W 27</td>
<td>Boolean algebra, Digital gates</td>
<td>Ch 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>F 1</td>
<td>Flip-flops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab 6</td>
<td></td>
<td></td>
<td>Construct digital adder circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>M 4</td>
<td>Steady-state sinusoids, Phasors, & Complex numbers.</td>
<td>2.34</td>
<td></td>
<td>Phasors Intro</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>W 6</td>
<td>Phasors, Impedance, and AC circuits</td>
<td>2.27</td>
<td></td>
<td>Complex #’s</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>F 8</td>
<td>AC circuit examples</td>
<td>2.29-30</td>
<td>Notes: Phasors Ex</td>
<td>Impedance</td>
</tr>
<tr>
<td>Lab</td>
<td>Date</td>
<td>Course</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Lab 7</td>
<td>Construct counter circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>M 11</td>
<td>SPRING BREAK</td>
<td>Filters and frequency-response plots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W 13</td>
<td>SPRING BREAK</td>
<td>2.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 15</td>
<td>SPRING BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>M 18</td>
<td>Lab 8</td>
<td>Build and test audio circuit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>W 20</td>
<td>Exam 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>F 22</td>
<td>M1: Overview of Sounds and Speech; Matlab® Intro; Starting and quitting; Matlab® Primer book, Desktop; Matlab® as powerful graphics calculator Lect_M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>M 25</td>
<td>M2: Variables, Arrays, Matrices: entering, addition, transpose, inverses, products, element-by-element operations, Concatenation, Complex Numbers Lect_M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W 27</td>
<td>M3: Script files, Array indexing, Colon operator, Indexing using arrays, Sum function, Functions operating on columns, Generating matrices Lect_M3, Advanced indexing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 29</td>
<td>M4: Operators, Identity matrix (eye), min, max, size, character strings, Advanced indexing Lect_M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>M 1 Apr</td>
<td>M5: Advanced indexing continued, Writing script files, Clearing functions Lect_M5, my_script.m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>W 3</td>
<td>M6: 3-D plots using meshgrid and surfl, Array processing, Fourier theory, Creating 3-D surfaces Lect_M6, bumps.m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>F 5</td>
<td>M7: Solving simultaneous equations, Fitting lines or other functions to data, Comparison operators: ==, >=, <=, >, <, Any and All functions Lect_M7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>M 8</td>
<td>M8: 3-D plot example with array processing, And and Or operators, Any and All operators, if else control flow Lect_M8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>W 10</td>
<td>Exam 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>F 12</td>
<td>M9: Digital Signal Processing, Fast Fourier Transform, Spectrum Lect_M9, chop_spec.m, real_fft.m, butter_filter.m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab M3</td>
<td></td>
<td></td>
<td>Process and plot sound waveforms: spectrogram, sound effects, filtering, plots.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>M 15</td>
<td>M10: Control flow: if, else, elseif, end; switch; for loops; while loops Lect_M10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W 17</td>
<td>M11: Writing Matlab® functions Lect_M11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 19</td>
<td>M12: Writing Matlab® functions, Digital filter function Lect_M12, dig_filter.m, r2_p.m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab M4</td>
<td></td>
<td></td>
<td>Create a sound effect: write functions, plot waveforms, create sound effect.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>M 22</td>
<td>M13: Matlab® input/output to and from files, dlmread, wavread, imread Lect_M13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W 24</td>
<td>Solution of Practice Final Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 1</td>
<td>May</td>
<td>Final Exam 8:00-10:00 a.m. (regular classroom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>