EX: Find a radially symmetric joint probability density function, \(f(x, y) \), for which \(X \) and \(Y \) are independent. That is, find an \(f(x, y) \) that may be written as a function of \(x^2 + y^2 \). Hint: consider what type of function turns multiplication into addition.

SOL'N: The function that turns multiplication into addition is the exponential:

\[
 e^x e^y = e^{x+y}
\]

We replace \(x \) and \(y \) with \(x^2 \) and \(y^2 \) to obtain a function of \(x^2 + y^2 \). We then add a minus sign to obtain functions that have finite area over the interval \((-\infty, \infty)\). Finally, we need a normalizing constant to make the area of each function equal to one so we have valid probability density functions.

Calculating the normalizing constant by calculating the integral of \(e^{-x^2} \) directly requires advanced complex analysis. Instead, we observe that we have a gaussian density function with \(\sigma^2 = \frac{1}{2} \):

\[
 f_X(x) = \frac{1}{\sqrt{2\pi} \sigma^2} e^{-x^2/2\sigma^2}
\]

Thus, we have the following \(f_X(x) \) and \(f_Y(y) \):

\[
 f_X(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} \quad \quad f_Y(y) = \frac{1}{\sqrt{\pi}} e^{-y^2}
\]

Since \(X \) and \(Y \) are independent, the probability density function \(f(x, y) \) is the product of \(f_X(x) \) and \(f_Y(y) \):

\[
 f(x, y) = \frac{1}{\pi} e^{-(x^2+y^2)}
\]

This definition holds for all real \(x \) and \(y \). The plots below show the shape of this 2-dimensional gaussian (but with \(\sigma^2 = 1 \)). Note the circular symmetry in the contour plot.

What is remarkable about the circularly symmetric gaussian is that, since \(x \) and \(Y \) are independent, every cross section must have the same shape after being scaled vertically to achieve an area equal to one. A cylindrically-shaped \(f(x, y) \) would have cross sections of different widths, for example.
Standard 2-D gaussian probability density function

Standard 2-D gaussian probability density function: Topographic Map