ex:

\[
\begin{align*}
v_1 & = V_1 \\
v & = V \\
\frac{1}{2} \mu F + \frac{1}{8} \mu F & = V \\
2 \mu F & + v_2 = V \\
v_1(t=0) = -10 V & \\
v_2(t=0) = -5 V \\
i & = 240 e^{-10t} \mu A \\
\end{align*}
\]

Calculate total energy trapped in C's as \(t \to \infty \).

Hint: Don't combine C's in series - find energy for each C and sum them.

Note: The energy trapped in C's refers to energy that we cannot extract from the C's when the total \(V \) across the two C's in series is 0V.

For example:

\[
\begin{align*}
V & = 1V \\
+ & \\
\begin{array}{c}
\text{Here we have:} \\
v_{1v2} = v = 0V \\
\text{but each C has} \\
\text{\(V \to 0 \) across it.}
\end{array}
\end{align*}
\]

If we connect an \(R \) across the terminals, we will get no current flow because \(V = 0V \).

Thus, we cannot access the "trapped" energy.

The trapped energy is \(w_{t1} + w_{t2} = \frac{1}{2} \mu F (1V)^2 + \frac{1}{8} \mu F (2V)^2 \)

\[
= \frac{1}{2} \mu F + \frac{1}{4} \mu F = 5 \mu F.
\]

(Note that for series combination we would get \(\frac{1}{2} C_{eq} V^2 = \frac{1}{2} C_{eq} \cdot 0^2 = 0 J \).

Note: The energy stored in C's refers to energy that we can extract from the C's by connecting a circuit to the two terminals having series C's between.

For the stored energy, we get the correct answer if we use \(C_{eq} = \frac{1}{2} C_1 + \frac{1}{2} C_2 = C_1 C_2 / (C_1 + C_2) \) (see next page).

Moral: We can use \(C_{eq} \) if all we care about are the \(i \) and \(v \) at terminals, (or the energy we can extract from the terminals).

We now consider this energy issue in detail before finally solving the problem.
Assume no energy is trapped when $v=0$.

Now let current i flow until time t.

$$i = C \frac{dv}{dt} \Rightarrow \int i dt = C \cdot v_1$$

for each $C_i = C_1$ or C_2.

Both C_1s see same i (since in series), so

$$\int i dt$$

same for both C_1 and C_2.

$$\therefore C_1 v_1 = C_2 v_2 \quad \text{or} \quad v_2 = \frac{C_1}{C_2} v_1$$

Now, $C_{eq} = C_1 \parallel C_2 = \frac{C_1 C_2}{C_1 + C_2}$.

$$\frac{1}{2} C_{eq} v^2 = \frac{1}{2} C_{eq} (v_1 + v_2)^2 = \frac{1}{2} \left(\frac{C_1 C_2}{C_1 + C_2} \right) \left(v_1 + \frac{C_1}{C_2} v_1 \right)^2$$

$$= \frac{1}{2} \left(\frac{C_1 C_2}{C_1 + C_2} \right) \left(\frac{(C_1 + C_2) v_1}{C_2} \right)^2$$

$$= \frac{1}{2} \left(\frac{C_1}{C_2} \right) (C_1 + C_2) v_1^2$$

$$= \frac{1}{2} C_{eq} v^2 \checkmark$$

If there is trapped energy, then when $v=0$ we have $v_1 = v_0$ and $v_2 = -v_0$ for some voltage v_0.

If we let current i flow and store energy then we have

$$\int i dt = C_1 (v_1 - v_0) = C_2 (v_2 + v_0), \quad \text{or} \quad v_2 = \frac{1}{C_2} \left[(C_1 + C_2) v_0 \right]$$

The stored energy on C_{eq} is

$$\frac{1}{2} C_{eq} v^2 = \frac{1}{2} C_{eq} (v_i + v_0)^2$$

This is equal to the total energy for C_1 and C_2 minus the trapped energy. In other words the stored energy is

$$\frac{1}{2} C_1 v_1^2 + \frac{1}{2} C_2 v_2^2 = \left(\frac{1}{2} C_1 v_1^2 + \frac{1}{2} C_2 v_0^2 \right) = \left(\frac{1}{2} C_{eq} v_i^2 \right)$$

total energy trapped energy stored energy
We now find \(v_1(t \to \infty) \) and \(v_2(t \to \infty) \).

\[
i = 240 \, e^{-10t} \, \mu A = C_1 \, \frac{dv_1}{dt} = C_2 \, \frac{dv_2}{dt} \quad \text{same i flows thru}
\]

\[
\int_{t=0}^{t=\infty} i(t) \, dt = \int_{t=0}^{t=\infty} \frac{240 \, e^{-10t}}{C_1} \, dv_1 = \int_{t=0}^{t=\infty} C_2 \, dv_2
\]

\[
\left. \frac{240 \, e^{-10t}}{C_1} \right|_{t=0}^{t=\infty} = C_1 \left[v_1(t=\infty) - v_1(t=0) \right] = C_2 \left[v_2(t=\infty) - v_2(t=0) \right]
\]

\[
-24 \, e^{-10t} \, \mu A \, s = 2 \, \mu F \left[v_1(t=\infty) - 10V \right] = 8 \, \mu F \left[v_2(t=\infty) - 5V \right]
\]

\[
24 \, \mu A \, s = 2 \, \mu F \left[v_1(t=\infty) + 10V \right] = 8 \, \mu F \left[v_2(t=\infty) + 5V \right]
\]

\[
v_1(t=\infty) = \frac{24 \, \mu A \, s}{2 \, \mu F} = 12V - 10V = 2V
\]

\[
v_2(t=\infty) = \frac{24 \, \mu A \, s}{8 \, \mu F} = 3V - 5V = -2V
\]

Energy trapped \(E_{\text{trapped}} = \frac{1}{2} C_1 v_1^2(t=\infty) + \frac{1}{2} C_2 v_2^2(t=\infty) \)

\[
= \frac{1}{2} 2 \, \mu F (2V)^2 + \frac{1}{2} 8 \, \mu F (-2V)^2
\]

\[
= 4 \, \mu J + 16 \, \mu J
\]

\[
= 20 \, \mu J
\]

Note: The given \(i = 240 \, e^{-10t} \) leaves us with
\[
v = v_1(t=\infty) + v_2(t=\infty) = 0V. \quad \text{We must have}
\]
\[
v = 0V \quad \text{for the calculation of the trapped energy.}
\]

Otherwise, we also have stored energy \(= \frac{1}{2} C_2 \, v^2 \).

A different \(i \) might not have resulted in \(v = 0 \)
as \(t \to \infty \).