Ex:

After being open for a long time, the switch closes at \(t = 0 \). \(v_C(t = 0^-) = 0 \text{V} \). Find \(v_C(t) \) for \(t > 0 \).

sol’n: Use the general form of solution for RC problems.

\[
v_C(t > 0) = v_C(t \to \infty) + [v_C(0^+) - v_C(t \to \infty)] e^{-\frac{t}{R_C C}}
\]

We now proceed to find the following values:

- \(v_C(0^+) \), \(v_C(t \to \infty) \), and \(R_C C \)

To find \(v_C(0^+) \), we consider \(t = 0^- \) and find \(v_C(0^-) \). Since \(v_C \) is an energy variable that cannot change instantly, we have \(v_C(0^+) = v_C(0^-) \).

At \(t = 0^- \), currents and voltages have stabilized, and all time derivatives of currents and voltages are zero.

Thus, \(i_C = C \frac{dv_C}{dt} = C \cdot 0 = 0 \). \(C \) looks like open.
Example 1 (cont.)

\(t = 0^- : \ C = \text{open} \), switch open

From the circuit diagram, we cannot determine \(v_c(0^-) \). The \(C \) could be charged to some voltage, and it would remain at that voltage forever.

Fortunately, the problem states that \(v_c(0^-) = 0V \).

\(t = 0^+ : \ v_c \) cannot change instantly, so

\[v_c(0^+) = v_c(0^-) = 0V \]

If needed a circuit model at \(t=0^+ \), we would model the \(C \) as a \(v \ source \) with value \(0V \). In other words, \(C = \text{wire} \) at \(t=0^+ \).

To find \(v_c(t \rightarrow \infty) \), we again use the idea that currents and voltages are stable and \(C = \text{open} \).
\(t \to \infty: \quad C = \text{open}, \quad \text{switch closed} \)

Since no current flows, the voltage drop across the 2k\(\Omega \) and 3k\(\Omega \) \(R' \)'s is 0V.
Thus, we have 15V across \(C \):

\(v_C(t \to \infty) = 15V \)

To find \(R_{Th} \), we remove \(C \) and find the Thevenin equivalent resistance seen looking into the terminals where \(C \) was connected.

For the circuit we are using here, we can find \(R_{Th} \) by turning off the independent 15V source:

\(R_{Th} = 2k\Omega + 3k\Omega = 5k\Omega \)

\(R_{Th}C = 5k\Omega \times 0.2\mu F = \frac{1}{5ms} \)

\(\therefore v_C(t>0) = 15V + (0V - 15V) e^{-\frac{t}{1ms}} \)

\(v_C(t \to \infty) \quad v_C(0^-) \quad v_C(t \to \infty) \)