Ex:

After being open for a long time, the switch closes at $t = 0$. Write an expression for $v_c(t \geq 0)$ in terms of R_1, R_2, R_3, i_s, and C.

Solt'n: At $t = 0^-$ the switch is open and $C = \text{open}$.

$t = 0^-:$

- i_s flows thru R_2 producing v-drop $i_s R_2$.

Since there is no current in R_1, this voltage appears across C.

$$v_c(0^-) = i_s R_2$$

Note that $+$ sign of $i_s R_2$ v-drop connects to $+$ sign of v_c thru R_1 ($0v$ drop \approx wire) and $-$ sign of $i_s R_2$ v-drop connects to $-$ sign of v_c thru wire.
At \(t=0^+ \), we treat \(C \) as \(v \)-source with value \(v_c(0^+) = v_c(0^-) \). Switch is closed.

\[
v_c(0^+) = v_c(0^-) = i_S R_2
\]

Since the value we need is \(v_c(0^+) \), there is nothing further to solve.

For \(t \to \infty \), we treat \(C \) as open, switch closed.

Now we have \(v_c = i_S \cdot R_2//R_3 \). This is the same as \(t=0^- \) except that we have \(R_2//R_3 \) instead of \(R_2 \).

\[
v_c(t \to \infty) = i_S \cdot R_2//R_3
\]

The time constant is \(R_{TH} C \).

We remove \(C \) and look into the circuit from terminals where \(C \) attaches. We also turn off \(i_S \). What we see is \(R_{TH} \).
we have \(R_{Th} = R_1 + R_2 \parallel R_3 \)

Now plug terms into general soln:

\[
v_c(t>0) = v_c(t \to \infty) + [v_c(0^+) - v_c(t \to \infty)] e^{-t/R_{Th}C}
\]

Here, we have:

\[
v_c(t>0) = i_s \cdot R_2 \parallel R_3 + (i_s R_2 - i_s R_2 \parallel R_3) \frac{-t}{(R_1 + R_2 \parallel R_3)C}
\]