ex:

No energy stored in L_1 and L_2 when switch opens.

a) Find $i_1(t \geq 0)$ and $i_2(t \geq 0)$.

b) Find $i_1(t \to \infty)$ and $i_2(t \to \infty)$.

\[a) \quad i_1(t \geq 0) = I_g \frac{L_2}{L_1 + L_2} \left(1 - e^{-t/\tau} \right) \quad \text{where} \quad \tau = L_1 || L_2 \]

\[i_2(t \geq 0) = I_g \frac{L_1}{L_1 + L_2} \left(1 - e^{-t/\tau} \right) \]

\[b) \quad i_1(t \to \infty) = I_g \frac{L_2}{L_1 + L_2} \quad i_2(t \to \infty) = I_g \frac{L_1}{L_1 + L_2} \]

soln: a) Take Thévenin equivalent of I_g and R_g on left.

Solve for v across L's by replacing L's with equivalent L.

\[\text{Circuit for } t \geq 0 \]

L's in parallel give $L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$.

L's in parallel are like R's in parallel in terms of the formula we use.

Now we use the general solution for $v(t \geq 0)$:

\[v(t \geq 0) = v(t \to \infty) + \left[v(0^+) - v(t \to \infty) \right] e^{-t/\left(L_{eq} R_g \right)} \]

To find $v(0^+)$, we use $i_1(0^+) = i_1(0^-)$ and $i_2(0^+) = i_2(0^-)$. But $i_1(0^-) = i_2(0^-) = 0$ since no energy is stored in L_1 and L_2 at $t = 0$.
a) cont.

Since \(i_1(0^+) \) and \(i_2(0^+) = 0 \), we must have no current through \(R_g \) at \(t = 0^+ \).

\[\therefore \text{At } t=0^+, \text{ we have no } v \text{ drop across } R_g. \]

\[\therefore v(t=0^+) = V_{Th} = I_g \cdot R_g \]

For \(v(t \to \infty) \) we observe that the \(L \)'s act like wires, and \(v(t \to \infty) = 0 \).

Plugging into the general soln gives

\[v(t \geq 0) = I_g \cdot R_g \cdot e^{-t/(\text{Log } R_g)} \]

Note: The time constant for circuit with \(L \) and \(R \) is \(\text{Log } R \). Thevenin equivalent always gives the needed \(R \).

Now we can also write down a formula for \(i(t) = i_1(t) + i_2(t) \) for \(t \geq 0 \):

\[i(t \geq 0) = i(t \to \infty) + [i(0^+) - i(t \to \infty)] e^{-t/(\text{Log } R_g)} \]

Note: All \(i \)'s and \(v \)'s have same time constant.

We know \(i(0^+) = i_1(0^+) + i_2(0^+) = i_1(0^-) + i_2(0^-) = 0 \).

At \(t \to \infty \), the \(L \)'s act like wires, giving \(i = I_g \).

\[\therefore i(t \geq 0) = I_g \left[1 - e^{-t/(\text{Log } R_g)} \right] \]

Now we determine how \(i(t \geq 0) \) is divided between the two \(L \)'s to give \(i_1(t \geq 0) \) and \(i_2(t \geq 0) \).
a) cont.

Since both L's have same V across them, we have

\[v = L_1 \frac{di_1}{dt} = L_2 \frac{di_2}{dt} \]

\[\therefore \frac{di_1}{dt} = \frac{L_2}{L_1} \frac{di_2}{dt} \]

Now we calculate currents:

\[i_1(t) = \int \frac{di_1}{dt} dt = \int \frac{L_2}{L_1} \frac{di_2}{dt} dt = \frac{L_2}{L_1} \int di_2 \]

or \[i_1(t) = \frac{L_2}{L_1} i_2(t) \]

Also, \[i_1(t) + i_2(t) = i(t) \].

Solving these two eqns gives

\[i_1(t) = \frac{L_2}{L_1 + L_2} i(t) \]

\[i_2(t) = \frac{L_1}{L_1 + L_2} i(t) \]

Thus,

\[i_1(t\geq0) = I_g \frac{L_2}{L_1 + L_2} \left(1 - e^{-t/(\text{Log} / R_g)} \right) \]

\[i_2(t\geq0) = I_g \frac{L_1}{L_1 + L_2} \left(1 - e^{-t/(\text{Log} / R_g)} \right) \]

b) At \(t \to \infty \) we have \(e^{-t/(\text{Log} / R_g)} \to 0 \).

\[\therefore i_1(t\to\infty) = I_g \frac{L_2}{L_1 + L_2} \]

\[i_2(t\to\infty) = I_g \frac{L_1}{L_1 + L_2} \]