Ex:

\[i_s = 4 \text{ mA} \]

\[\begin{array}{c}
R_1 = 150 \Omega \\
C = 2 \mu F \\
R_2 = 100 \Omega \\
L \\
i_L(t)
\end{array} \]

After being closed for a long time, the switch opens at \(t = 0 \).

a) If \(L = 125 \text{ mH} \), find the characteristic roots, \(s_1 \) and \(s_2 \), for the above circuit.

b) If \(L = 11.834 \text{ mH} \), find the damping frequency, \(\omega_d \).

c) Find the value of \(L \) that makes the circuit critically damped.

SOL'N: a) After \(t=0 \) we have parallel RLC.

From the differential eq'n for the parallel RLC with \(Ae^{st} \) substituted for the sol'n, we get the characteristic eq'n for the circuit:

\[s^2 + \frac{1}{RC} s + \frac{1}{LC} = 0 \]

We get the characteristic roots by solving this quadratic eq'n:

\[s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \]

where \(\alpha \equiv \frac{1}{2RC} \quad \omega_0^2 \equiv \frac{1}{LC} \)

Now we plug in values for components.

\(R = R_2 = 100 \Omega \quad L = 125 \text{ mH} \) (for part a) \(C = 2 \mu F \)
\[\alpha = \frac{1}{2 \cdot 100 \Omega \cdot 2 \mu F} = \frac{1}{400} \text{ M rad/s} = \frac{1}{1k} \text{ M rad/s} \]

\[\alpha = 2.5 \ \text{k rad/s} \]

\[\omega_0^2 = \frac{1}{125 \text{ mH} \cdot 2 \mu F} = \frac{1}{250 \text{ ns}} \cdot \frac{(\text{rad/s})^2}{1k} \]

\[\omega_0^2 = 4 \text{ M (rad/s)}^2 \quad \text{or} \quad \omega_0 = 2k \text{ rad/s} \]

\[\therefore s_{1,2} = -2.5k \pm \sqrt{(2.5k)^2 - (2k)^2} \text{ rad/s} \]

\[= -2.5k \pm 1.5k \ \text{ rad/s} \]

\[s_{1,2} = -4k \text{ and } -1k \ \text{ rad/s} \]

Note: Real part of s is always \(\geq 0 \) for an RLC circuit.

b) For \(L = 11.834 \text{ mH} \) we have different \(\omega_0^2 \):

\[\omega_0^2 = \frac{1}{LC} = \frac{1}{11.834 \text{ mH} \cdot 2 \mu F} = \frac{42.25}{\text{m rad}} \]

\[\omega_0^2 = 42.25 \text{ M rad/s} \quad \text{or} \quad \omega_0 = 6.5k \text{ rad/s} \]

Note: Changing \(L \) does not change \(\alpha \) for a parallel RLC, but it would change \(\alpha \) for a series RLC where \(\alpha = R/2L \).

Here, \(s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \) with \(\omega_0 > \alpha \).
Since \(\omega_0 > \kappa \), we get complex roots:
\[
S_{1,2} = -2.5k \pm \sqrt{(2.5k)^2 - (6.5k)^2} \text{ rad/s}
\]
\[
S_{1,2} = -2.5k \pm j6.0k \text{ rad/s}
\]

We define the damping frequency to be the magnitude of the \(\sqrt{ } \) term, or
\[
\omega_d = \sqrt{\omega_0^2 - \kappa^2} \quad \text{(order of \(\omega_0, \kappa \) is reversed)}
\]
\[
\omega_d = \sqrt{(6.5k)^2 - (2.5k)^2} \text{ rad/s}
\]
\[
\omega_d = 6k \text{ rad/s}
\]

c) The circuit is critically damped when \(S_1 = S_2 \), i.e. when \(\sqrt{ } = 0 \) or \(\kappa = \omega_0 \).

Since \(\kappa = 2.5k \text{ rad/s} \) doesn't change with \(L \), we must have \(\omega_0 = 2.5k \text{ rad/s} \).

\[
1 = \frac{2.5k}{\sqrt{LC}} \Rightarrow \frac{1}{LC} = (2.5k/r)^2
\]

or
\[
L = \frac{1}{(2.5k)^2} = \frac{1}{6.25k^2} = \frac{1}{6.25 \cdot 2}
\]
\[
L = 80 \text{ mH}
\]