Course number	ECE 3200
Course title	Introduction to Semiconductor Physics
Required /elective	Required
Catalog description	Introduces fundamental properties of electronic materials from atoms to
	p-n junctions. Begins with crystal structure, bonding, and classical
	theory of electrical conductivity. Introduces elementary quantum
	mechanics concepts such as particle/wave duality, the Schrodinger
	equation, potential wells, tunneling and hydrogenic atoms. Discussion
	of real-space and reciprocal space. Introduces phonons and bandstructure
	of solids and basics of quantum theory of solids. Introduces basics of
	semiconductor doping, growth, and processing. Discusses carrier pro-
	cesses: equilibrium carrier statistics, interactions with light, generation
	and recombination, and transport. Discusses fundamental of semi-
	conductor p-n junctions and simple transistors. Additional topics in
	epitaxy, heterojunctions, reduced-dimensional and nano- structures,
	modern devices, and other current topics will also be discussed.
Pre-requisite(s)	Major status in ECE
Textbook(s) and/or	Readings and homework will be from S.O. Kasap, <i>Principles of</i>
required material	Electronic Materials and Devices, 3 th edition (McGraw Hill, 2006,
	ISBN-10: 00/1244581 or ISBN-13: 9/8-00/1244589). Available from
	the $\cup \cup$ bookstore and other retailers.
	Suggested Supplemental Texts (it is not required to huy these most are
	suggested Supplemental Texts (it is not required to buy these, most are
	H C Obanian Modern Physics 2^{nd} Ed
	S M Sze Semiconductor Devices: Physics and Technology
	B.G. Streetman & S. Baneriee, Solid State Electronic Devices
	R F Pierret Semiconductor Fundamentals (Modular Series on Solid
	State Devices Pierret & Neudeck Eds)
	G.W. Neudeck, <i>The P-N Junction Diode</i> (Modular Series on Solid State
	Devices, Pierret & Neudeck, Eds.)
Course objectives	Through this course, students will:
, i i i i i i i i i i i i i i i i i i i	1) Gain an understanding of the electronic structure and properties
	of materials.
	2) Gain an understanding of fundamental semiconductor physics
	and technology.
	3) Gain an understanding of elements of modern physics required
	for goals 1 and 2.
Topics covered	See Course description.
Class schedule	Tu,Th 3:40-5:00 PM, WEB 2250
Lab schedule	None
Contribution of	This is a course electrical engineering course that teaches fundamental
course to meeting	semiconductor physics and electronic structure and properties.
the requirements of	
ABET Criterion 5	
Relationship to	HIGH (a) An ability to apply mathematical, scientific, and engineering
program outcomes	Knowledge to solve electrical engineering problems.
	inon (e) An addity to identify, formulate, and solve electrical
	enzineering problems.

	MODERATE (h) The broad education necessary to understand the
	impact of engineering solutions in a global and societal context.
	HIGH (i) A recognition of the need for, and an ability to engage in,
	lifelong learning. HIGH
	HIGH (j) An awareness of current events and trends affecting the
	electrical engineering profession. HIGH
	MODERATE (k) An ability to use the techniques, skills, and modern
	engineering tools necessary for engineering practice.
Prepared by	Mike Scarpulla
Date	January 26, 2009