## Corrections -- January 30, 2000

## Adaptive Control: Stability, Convergence, and Robustness

p. 12, line 11: in eqn (0.3.5), replace " $(\theta r)$ " by " $(r)$ "
p. 13, line 17: replace "Note that $(0.3 .15)$ " by "Note that ( 0.3 .14 )"
p. 22, line 14: in eqn (1.4.9), replace the lower limit of the integral, " 0 ", by " $t_{0}$ "
p. 22, line 16: replace "(1.3.7)" by "(1.4.7)"
p. 24, line 17: replace "for all $t \geq 0$ " by "for all $t \geq t_{0} \geq 0$ "
p. 37, line 5: in eqn (1.5.53), replace " $\phi(t+\delta, t)$ " by " $\Phi(t+\delta, t)$ "
p. 37, line 18: in eqn (1.5.56), replace " $\leq 0$ " by " $\geq 0$ "
p. 39, line 1 : in eqn (1.5.61), replace " $d \tau$ " by " $d \sigma$ "
p. 45 , line 16: in eqn (2.0.3), replace " $y(t)$ " by " $y_{p}(t)$ "
p. 48, line 18: in eqn (2.0.18), replace " $e_{1}^{2}(\tau)$ " by " $\left(\theta^{T}(t) w(\tau)-y_{p}(\tau)\right)^{2 n}$
p. 48, line 21: in eqn (2.0.19), replace " $e_{1}^{2}(\tau)$ " by " $\left(\theta^{T}(t) w(\tau)-y_{p}(\tau)\right)^{2 "}$
p. 50, line 5: in eqn (2.0.28), replace " $P(0)=P_{0}$ " by " $P(0)=P(0)^{T}=P_{0}$ "
p. 50, line 7: in eqn (2.0.29), replace $" w(t) w^{T}(\tau) "$ by $" w(\tau) w^{T}(\tau) "$
p. 50, line 7: in eqn (2.0.29), replace " $P_{0}$ " by " $P_{0}^{-1 "}$ at both places
p. 50, line 9: in eqn (2.0.30), replace " $P_{0}$ " by " $P_{0}^{-1 "}$ at both places
p. 50 , line 9 : in eqn (2.0.30), replace " $d t$ " by " $d \tau$ "
p. 51, line 18: in eqn (2.0.38), replace " $a_{m}+k_{m} b_{0}(t)$ " by " $a_{m}-k_{m} b_{0}(t)$ "
p. 51, line 19: in eqn (2.0.38), replace " $\left(b_{0}(t)-b_{0}^{*}\right)$ " by " $k_{m}\left(b_{0}(t)-b_{0}^{*}\right)$ "
p. 52, line 3: in eqn (2.0.41), replace " $a_{m} e_{1}$ " by " $a_{m} e_{1}^{2 "}$
p. 64 , line 15 : replace $"-\frac{1}{2} g$ " by " $-\frac{1}{2 g} "^{\prime}$
p. 66, line 19: delete "that is the projection can only improve the convergence of the algorithm"
p. 67, line 21: in eqn (2.4.9), replace " $\frac{d\left(P^{-1}\right)}{d t}$ " by " $\left\|\frac{d\left(P^{-1}\right)}{d t}\right\| "$
p. 68, line 27: in eqn (2.4.13), replace " $\beta(t)$ " by " $|\beta(t)| "$ at both places
p. 69 , line 1: replace " $\beta$ " by " $|\beta| "$
p. 74, line 4: replace " $[A, C]$ " by " $[C, A]$ "
p. 74, line 7: replace " $[A+K C, C]$ " by " $[C, A+K C]$ "
p. 74, line 16: replace " $\left[0, w^{T}(t)\right]$ " by " $\left[w^{T}(t), 0\right]$ "
p. 74, line 17-18: replace " $\left[-g w(t) w^{T}(t), w^{T}(t)\right]$ " by " $\left[w^{T}(t),-g w(t) w^{T}(t)\right] "$
p. 83, line 2: replace $" \operatorname{Re}(\hat{M}(j \omega) "$ by $" \operatorname{Re}(\hat{M}(j \omega)) "$
p. 83, line 3: replace $" \operatorname{Re}(\hat{M}(j \omega)$ " by $" \operatorname{Re}(\hat{M}(j \omega)) "$
p. 84, line 2: replace " $c^{T "}$ by " $c^{T}(t)$ "
p. 88, line 13: replace $\left[A, c^{T}\right]$ by $\left[c^{T}, A\right]$
p. 88 , line 18: replace "Using the triangle inequality" by "Using the fact that $(a-b)^{2} \geq \frac{1}{2} a^{2}-b^{2 "}$
p. 88 , last 3 lines: insert factors of $1 / 2$ as follows

$$
\begin{aligned}
\int_{t_{0}}^{t_{0}+\delta} e_{1}^{2}(\tau) d \tau \geq & \frac{1}{2} \int_{t_{0}}^{t_{0}+m \sigma} x_{1}^{2}(\tau) d \tau-\int_{t_{0}}^{t_{0}+m \sigma} x_{2}^{2}(\tau) d \tau \\
& +\frac{1}{2} \int_{t_{0}+m \sigma}^{t_{0}+\delta} x_{2}^{2}(\tau) d \tau-\int_{t_{0}+m \sigma}^{t_{0}+\delta} x_{1}^{2}(\tau) d \tau \\
\geq & \frac{1}{2} \gamma_{3}(m \sigma)\left|e_{m}\left(t_{0}\right)\right|^{2}-m \alpha_{2}\left|\phi\left(t_{0}\right)\right|^{2}
\end{aligned}
$$

p. 89 , line 1 : in eqn (2.6.38), replace " $n \alpha_{1}$ " by " $\frac{1}{2} n \alpha_{1}$ "
p. 89, line 3: adjust eqn (2.6.39) to read " $\frac{1}{2} \gamma_{3}(m \sigma)-\gamma_{1} e^{-\gamma_{2} m \sigma} \geq \gamma_{3}(m \sigma) / 4 "$
p. 89, line 5: in eqn (2.6.40), replace " $n \alpha_{1}$ " by " $\frac{1}{2} n \alpha_{1} "$
p. 89 , line 7: in eqn (2.6.41), replace " $\gamma_{3}(m \sigma) / 2$ " by " $\gamma_{3}(m \sigma) / 4$ "
p. 101, line 4: replace " $\frac{k_{p}}{s+a_{m}} \hat{M}\left(\phi_{r} r+\phi_{y} y_{p}\right)$ " by " $\frac{k_{p}}{s+a_{m}}\left(\phi_{r} r+\phi_{y} y_{p}\right)$ "
p. 114, line 10: in eqn (3.3.17), replace " $+\varepsilon(t)$ " by " $-\varepsilon(t)$ "
p. 138, line 5: in eqn (3.5.27), replace " $e_{1}$ " by " $e_{0}$ "
p. 143, line 31: in the equation giving $\left|\phi^{T}(t) v(t)\right|$, replace " $\beta(t)$ " by "| $\beta(t) \mid$ " at both places
p. 148, line 9: replace "theorem 2.4.6" by "proposition 2.4.6"
p. 148, line 14: replace "the same conditions as $\beta$ " by "the same conditions as $|\beta(t)| "$
p. 155 , line 8 : replace "lemma 2.6 .6 " by "lemma 2.6.7"
p. 155, line 10: replace "lemma 2.6 .5 " by "lemma 2.6.6"
p. 161, line 12: in the title, replace "Sale" by "Scale"
p. 163, line 22: in eqn (4.1.30), replace " $\hat{P}(z)$ " by " $\hat{P}(r)$ "
p. 247, line 1: in eqn (5.5.49), replace " $-\varepsilon r(t)$ " by $"-g r(t)$ "
p. 247, line 13: in the caption for Fig. 5.15, replace " $r_{1}(t)$ " by " $r_{1}(t)=\sin (5 t)$ "
p. 271, line 21: replace " $\phi(t) \rightarrow 0$ as $t \rightarrow 0$ " by " $\phi(t) \rightarrow 0$ as $t \rightarrow \infty$ "
p. 282, line 5: in proposition 6.3.1, delete "Let $\hat{D}_{R}$ be column reduced and $\hat{D}_{L}$ be row reduced"
p. 282, line 16: in the proof of proposition 6.3.1, delete "and $\hat{D}_{R}$ column reduced"
p. 283, line 11: replace " $\xi \in R^{p x p}(s)$ " by " $\xi \in R^{p x p}[s] "$
p. 284, line 10: replace "Morse [1979]" by "Morse [1976]"
p. 288, line 27: replace " $\hat{D}_{L}$ row reduced" by " $\hat{D}_{L}$ column reduced (such a matrix fraction description always exists (cf. Beghelli S. \& R. Guidorzi, "A New Input-Output Canonical Form for Multivariable Systems," IEEE Trans. on Autom. Control, vol. 21, pp. 692-696, 1976)"
p. 290, line 5: in eqn (6.3.22), replace " $\bar{w}$ " by " $\bar{w}^{T}$ "
p. 338, line 1: in eqn (A3.6.5), replace " $t^{r}-k$ " by " $t^{r-k}$ "
p. 338, line 15: under "Derivation of (A3.6.10)", insert "When $r=0, u(t)=z(t)$, so that (A3.6.10) is trivially true. When $r>0, "$ (we have that ...)
p. 339, line 1: in eqn (A3.6.12), replace " $\int_{-\infty}^{t} "$ (the first integral) by " $\int_{0}^{t} "$
p. 339, line 12: in eqn (A3.6.15), replace $":="$ by " $\leq "$
p. 341 , line 14: replace " $\beta(t)$ " by " $|\beta(t)|$ " at both places
p. 356, line 10: in eqn (A6.2.13), replace " $m\left(\exp -\alpha-(t-\tau)\right.$ )" by " $m e^{-\alpha(t-\tau) "}$
p. 360, line 37-38: the title of the paper should be "Exponential Convergence and Robustness Margins in Adaptive Control" instead of "Small Signal..."
p. 366, line 22: insert Luders, G., \& K.S. Narendra, "An Adaptive Observer and Identifier for a Linear System," IEEE Trans. on Automatic Control, Vol. AC-18, no. 5, pp. 496-499, 1973.

