Ex:


After being open for a long time, the switch closes at $t=0$.
$v_{s}=28 \mathrm{~V} \quad i_{s}=112 \mathrm{~mA}$
$C=2 \mathrm{nF}$
$R_{1}=43 \Omega \quad R_{2}=47 \Omega \quad R_{3}=120 \Omega \quad R_{4}=750 \Omega \quad R_{5}=1 \mathrm{k} \Omega$
a) Calculate the energy stored in the capacitor at $t=0^{+}$.
b) Write a numerical time-domain expression for $v_{1}(t>0)$, the voltage across $R_{4}$.

Sol'n: a) To find the charge on the capacitor at $t=0^{+}$, we consider time $t=0^{-}$. At $t=0^{-}$, we treat the $C$ as an open circuit, and the switch is open. In this case, $R_{5}$ is in series with current source $i_{\mathrm{s}}$ and may be ignored. Since $C$ is open, current $i_{\mathrm{s}}$ flows in $R_{4}$, giving rise to a voltage across $R_{4}$. The three resistors on the left collapse into one resistor, and we observe that no current flows in $v_{\mathrm{s}}$. We conclude that the voltage across $C$ is the voltage drop across $R_{4}$ and $v_{\mathrm{s}}$.

$$
v_{\mathrm{C}}\left(0^{-}\right)=v_{\mathrm{s}}+i_{\mathrm{s}} R_{4}=28 \mathrm{~V}+112 \mathrm{~mA} \cdot 750 \Omega=28 \mathrm{~V}+84 \mathrm{~V}=112 \mathrm{~V}
$$

The voltage on the capacitor right after the switch moves is the same as the voltage just before the switch moves:

$$
v_{\mathrm{C}}\left(0^{+}\right)=v_{\mathrm{C}}\left(0^{-}\right)=112 \mathrm{~V}
$$

Now we can calculate the desired energy:

$$
w_{\mathrm{C}}\left(0^{+}\right)=\frac{1}{2} C v_{\mathrm{C}}^{2}=\frac{1}{2} 2 \mathrm{n}(112)^{2} \mathrm{~J}=12.544 \mu \mathrm{~J}
$$

b) We use the general formula for RC solutions:

$$
v_{1}(t>0)=v_{1}(t \rightarrow \infty)+\left[v_{1}\left(0^{+}\right)-v_{1}(t \rightarrow \infty)\right] e^{-\frac{t}{R_{\mathrm{Th}} C}}
$$

First we consider time approaching infinity. The capacitor will act like an open circuit, and the switch will be closed, shorting out $i_{\mathrm{s}}$. All of $i_{\mathrm{s}}$ will flow in the switch, rather than through $R_{4}$ and $R_{5}$. No current in $R_{4}$ means we have no voltage drop across $R_{4}$.

$$
v_{1}(t \rightarrow \infty)=0 \mathrm{~V}
$$

Second, we consider $t=0^{+}$. We replace the three resistors on the left side with one resistor:

$$
R_{\mathrm{Eq}}=\left(R_{1}+R_{2}\right)\left\|R_{3}=(43 \Omega+47 \Omega)\right\| 120 \Omega=90 \Omega \| 120 \Omega
$$

or

$$
R_{\mathrm{Eq}}=30 \Omega \cdot 3 \| 4=30 \Omega \cdot \frac{12}{7}
$$

We may ignore $i_{\mathrm{s}}$ since it is shorted out by the switch, and we model the $C$ as a voltage source of value $v_{\mathrm{C}}\left(0^{+}\right)=v_{\mathrm{C}}\left(0^{-}\right)=112 \mathrm{~V}$. We are left with resistors and two voltage sources. Our value of $v_{1}$ is given by a voltage divider:

$$
v_{1}\left(0^{+}\right)=\left(v_{\mathrm{C}}-v_{\mathrm{s}}\right) \frac{R_{4} \| R_{5}}{R_{\mathrm{Eq}}+R_{4} \| R_{5}}=84 \mathrm{~V} \frac{250 \Omega \cdot \frac{12}{7}}{280 \Omega \cdot \frac{12}{7}}=75 \mathrm{~V}
$$

Third, we find $R_{\text {Th }}$ by turning off the independent sources and looking into the circuit from the terminals where $C$ is attached.

$$
R_{\mathrm{Th}}=R_{\mathrm{Eq}}+R_{4}\left\|R_{5}=30 \Omega \cdot \frac{12}{7}+250 \Omega \cdot 3\right\| 4=30 \Omega \cdot \frac{12}{7}+250 \Omega \cdot \frac{12}{7}
$$

or

$$
R_{\mathrm{Th}}=280 \Omega \cdot \frac{12}{7}=40 \Omega \cdot 12=480 \Omega
$$

The time constant is $\tau=R_{\mathrm{Th}} C$.

$$
\tau=480 \Omega \cdot 2 \mathrm{nF}=960 \mathrm{~ns}
$$

Fourth and last, we plug values into the general solution:

$$
v_{1}(t>0)=0+[75-0] e^{-\frac{t}{960 \mathrm{~ns}}} \mathrm{~V}=75 e^{-\frac{t}{960 \mathrm{~ns}}} \mathrm{~V}
$$

