Ex:

Note: The first 5A portion of $i_{\mathrm{g}}(t)$ is always on.
a) Write the Laplace transform $I_{\mathrm{g}}(s)$ of $i_{\mathrm{g}}(t)$.
b) Draw the s-domain equivalent circuit, including source $I_{\mathrm{g}}(s)$, components, initial conditions for L and C, and terminals for $V_{0}(s)$.
c) Write the Laplace transform $V_{\mathrm{O}}(s)$ of $v_{\mathrm{O}}(t)$. Write your answer as a ratio of polynomials in s with numerical coefficients.
d) Write a numerical time-domain expression for $v_{\mathrm{o}}(t)$ where $t \geq 0$.

Sol'n: a) The 5 A portion of the current source acts like $5 u(t)$ for $t=0^{-}$to ∞ where the Laplace transform is computed.

$$
I_{\mathrm{g}}(s)=\frac{5}{s}-\frac{5}{s+2} \mathrm{~A}
$$

b) To find initial conditions, we use the time-domain circuit at $t=0^{-}$with the C treated as an open circuit and the L treated as a wire. The 5 A portion of the current source will be on, and the second term of the current source will be off.

$$
t=0^{-}
$$

The current will all flow in the wire that models the L.

$$
i_{\mathrm{L}}\left(0^{-}\right)=5 \mathrm{~A}
$$

Given the parallel form of the circuit, using a parallel current source for the initial conditions of the L is prudent. The current source corresponds to a step function that turns on a current in parallel with the L at time zero.

$$
\frac{i_{\mathrm{L}}\left(0^{-}\right)}{s}
$$

The capacitor will have zero initial conditions since it is shorted out by the wire modeling the L.

$$
v_{\mathrm{C}}\left(0^{-}\right)=0 \mathrm{~V}
$$

The source for initial conditions on the C may be omitted.

c) We sum the current sources, which results in some convenient cancellation. The output voltage will be the total current times the total parallel impedances.

$$
V_{\mathrm{o}}(s)=-\frac{5}{s+2} \mathrm{~A}\left(s L\left\|\frac{1}{s C}\right\| R\right)=-\frac{5}{s+2}\left(\frac{1}{\frac{1}{s L}+s C+\frac{1}{R}}\right)
$$

We clear the denominator of the denominator and get a coefficient of unity for the s^{2} coefficient.

$$
V_{\mathrm{o}}(s)=-\frac{5}{s+2}\left(\frac{1}{\frac{1}{s L}+s C+\frac{1}{R}}\right) \frac{s / C}{s / C}
$$

or

$$
V_{\mathrm{o}}(s)=-\frac{5}{s+2}\left(\frac{s / C}{\frac{1}{L C}+s^{2}+\frac{1}{R C} s}\right)=-\left(\frac{5}{s+2}\right)\left(\frac{s / C}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}}\right)
$$

or

$$
V_{\mathrm{O}}(s)=-\frac{5 s}{(s+2)\left(s^{2}+\frac{1}{0.5} s+\frac{1}{0.2}\right)}=-\frac{5 s}{(s+2)\left(s^{2}+2 s+5\right)}
$$

d) We factor the quadratic polynomial in the denominator so it matches the form found in the Laplace transforms of decaying cosine and sine.

$$
\begin{aligned}
& s^{2}+2 s+5=(s+1)^{2}+2^{2}=(s+a)^{2}+\omega^{2} \\
& \mathcal{L}\left\{e^{-a t} \cos \omega t\right\}=\frac{s+a}{(s+a)^{2}+\omega^{2}} \\
& \mathcal{L}\left\{e^{-a t} \sin \omega t\right\}=\frac{\omega}{(s+a)^{2}+\omega^{2}}
\end{aligned}
$$

We expand the output voltage in a modified partial fraction form.

$$
V_{\mathrm{o}}(s)=-\frac{5 s}{(s+2)\left[(s+1)^{2}+2^{2}\right]}=\frac{A}{s+2}+\frac{B(s+1)+C(2)}{(s+1)^{2}+2^{2}}
$$

We use the method of multiplying by the pole and evaluating at the pole to find the value of A.

$$
A=\left.V_{\mathrm{o}}(s)(s+2)\right|_{s=-2}=-\left.\frac{5 s}{\left[(s+1)^{2}+2^{2}\right]}\right|_{s=-2}=-\frac{5(-2)}{(-2+1)^{2}+2^{2}}
$$

or

$$
A=\left.V_{\mathrm{o}}(s)(s+2)\right|_{s=-2}=-\frac{-10}{5}=2
$$

Having found A, we put terms over a common denominator.

$$
\begin{aligned}
V_{\mathrm{o}}(s) & =\frac{2\left(s^{2}+2 s+5\right)+[B(s+1)+C(2)](s+2)}{(s+2)\left[(s+1)^{2}+2^{2}\right]} \\
& =-\frac{5 s}{(s+2)\left[(s+1)^{2}+2^{2}\right]}
\end{aligned}
$$

For the polynomials in the numerator to be equal, the coefficients of each power of s must be equal.

$$
2\left(s^{2}+2 s+5\right)+[B(s+1)+C(2)](s+2)=-5 s
$$

We group the coefficients of powers of s.

$$
2\left(s^{2}+2 s+5\right)+B\left(s^{2}+3 s+2\right)+C(2 s+4)=-5 s
$$

or

$$
(2+B) s^{2}+(4+3 B+2 C) s+(10+2 B+4 C)=-5 s
$$

From the s^{2} coefficient, which equals zero (on right side of equation), we find the value of B.

$$
B=-2
$$

From the constant coefficient, which equals zero (on right side of equation), we find the value of C.

$$
10+2(-2)+4 C=0
$$

or

$$
C=-\frac{3}{2}
$$

We check our answer by trying some values of s in our original expression for $V_{0}(s)$ and in our modified partial fraction expression for $V_{0}(s)$.

$$
\begin{aligned}
& \left.V_{\mathrm{O}}(s)\right|_{s=0}=\left.\left[-\frac{5 s}{(s+2)\left[(s+1)^{2}+2^{2}\right]}\right]\right|_{s=0}=0 \\
& {\left.\left[\frac{2}{s+2}+\frac{-2(s+1)-\frac{3}{2}(2)}{s^{2}+2 s+5}\right]\right|_{s=0}=\frac{2}{2}+\frac{-2-3}{5}=0 \text { works } \sqrt{ }}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.V_{\mathrm{o}}(s)\right|_{s=-1}=\left.\left[-\frac{5 s}{(s+2)\left[(s+1)^{2}+2^{2}\right]}\right]\right|_{s=-1}=\frac{5}{1(4)}=\frac{5}{4} \\
& {\left.\left[\frac{2}{s+2}+\frac{-2(s+1)-\frac{3}{2}(2)}{s^{2}+2 s+5}\right]\right|_{s=-1}=\frac{2}{1}-\frac{3}{1-2+5}=\frac{5}{4} \text { works } \sqrt{ }}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.V_{\mathrm{o}}(s)\right|_{s=-3}=\left.\left[-\frac{5 s}{(s+2)\left[(s+1)^{2}+2^{2}\right]}\right]\right|_{s=-1}=\frac{-15}{-1(4+4)}=\frac{15}{8} \\
& {\left.\left[\frac{2}{s+2}+\frac{-2(s+1)-\frac{3}{2}(2)}{s^{2}+2 s+5}\right]\right|_{s=-3}=\frac{2}{-1}-\frac{4-3}{9-6+5}=-2-\frac{1}{8}=\frac{15}{8} \text { works } \sqrt{ }}
\end{aligned}
$$

Having verified our expansion, we take the inverse Laplace transform.

$$
v_{\mathrm{o}}(t)=\mathcal{L}^{-1}\left\{\frac{2}{s+2}+\frac{-2(s+1)-\frac{3}{2}(2)}{s^{2}+2 s+5}\right\}
$$

or

$$
v_{\mathrm{O}}(t)=\left[2 e^{-2 t}-2 e^{-t} \cos 2 t-\frac{3}{2} e^{-t} \sin 2 t\right] u(t) \mathrm{V}
$$

