Ex:

Given the resistor and inductor connected as shown with the following values,

$$
R_{1}=1 \mathrm{k} \Omega \quad L_{1}=200 \mu \mathrm{H}
$$

and using not more than an additional one each R, C, and L in the dashed-line box, design a circuit to go in the dashed-line box that will produce the bandpass $|H(j \omega)|$ vs. ω shown above. That is:

$$
\begin{aligned}
& \underset{\omega}{\max }|H(j \omega)|=1 \text { and occurs at } \omega_{0}=50 \mathrm{k} \mathrm{r} / \mathrm{s} \\
& |H(j \omega)|=\frac{1}{4} \text { at } \omega=0 \quad \text { and } \quad \lim _{\omega \rightarrow \infty}|H(j \omega)|=\frac{1}{4}
\end{aligned}
$$

Specify values of R, C, and/or L, and show how they would be connected in the circuit. Note that a bandwidth is not specified, and you do not have to satisfy any more than the three requirements specified above.

Sol'n: If we use a series or parallel LC, our center frequency will be given by the standard formula. (Note that other configurations than a simple series or parallel LC will not necessarily obey this formula, so we need to reconsider this calculation if we choose some other configuration.)

$$
\omega_{\mathrm{o}}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{200 \mu \cdot C}}=50 \mathrm{kr} / \mathrm{s}
$$

or

$$
\omega_{\mathrm{o}}^{2}=\frac{1}{200 \mu \cdot C}=(50 \mathrm{kr} / \mathrm{s})^{2}
$$

Rearranging, we compute the value of C.

$$
C=\frac{1}{200 \mu \mathrm{H} \cdot \omega_{\mathrm{o}}^{2}}=\frac{1}{200 \mu(50 \mathrm{k})^{2}} \mathrm{~F}=\frac{1}{200 \mu(50 \mathrm{k})(50 \mathrm{k})} \mathrm{F}
$$

or

$$
C=\frac{1}{10(50 \mathrm{k})} \mathrm{F}=2 \mu \mathrm{~F}
$$

We can obtain a peak in the transfer function by having a parallel $L C$ in the vertical segment on the right side. The $L C$ will look like an open circuit at ω_{0}, meaning that the input will be connected to the output by a what is in the top rail with no current flow. This will give $\mathbf{V}_{\mathrm{o}}=\mathbf{V}_{\mathrm{i}}$ and $H(j \omega)=1$.

At $\omega=0$ and $\omega \rightarrow \infty$, the L ro C will be a short circuit, and we need some resistance in the top rail to give a voltage divider such that the output voltage is $1 / 4$ the input voltage. Thus, we need a resistor that is three times the value of R_{1}.

We obtain the circuit shown below. As noted earlier, we should verify that we have a series or parallel $L C$. We do have a parallel $L C$, so our value for C is valid.

