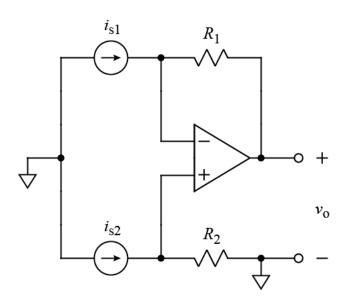


Ex:



- a) The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters i_{s1} , i_{s2} , R_1 , and R_2 .
- b) Derive a symbolic expression for v_0 in terms of common mode and differential input currents:

$$i_{\rm cm} \equiv \frac{(i_{s2} + i_{s1})}{2}$$
 and $i_{\rm dm} \equiv i_{s2} - i_{s1}$

The expression must contain not more than the parameters i_{cm} , i_{dm} , R_1 , and R_2 . Write the expression as i_{cm} times a term plus i_{dm} times a term. Hint: start by writing i_{s1} and i_{s2} in terms of i_{cm} and i_{dm} .

bonus) What condition must be satisfied in order for the above circuit to amplify only i_{dm} ?

Sol'n: a) We first determine the voltage at the + input of the op-amp. No current flows into the op-amp, so i_{s2} flows through R_2 to produce v_+ .

$$v_{+} = i_{s2}R_{2}$$

The negative feedback causes the voltage at the – input to be the same as the voltage at the + input.

$$v_{-} = v_{+} = i_{s2}R_{2}$$

We equate the current flowing toward the – input from the left and right sides. (No current flows into the – input.)

$$i_{\rm s1} = \frac{v_- - v_{\rm o}}{R_1}$$

We solve the above equation for v_0 .

$$v_0 = v_- - i_{s1}R_1 = i_{s2}R_2 - i_{s1}R_1$$

b) We write the current sources in terms of the common mode and differential mode currents.

$$i_{s1} = i_{cm} - \frac{i_{dm}}{2}$$
 and $i_{s2} = i_{cm} + \frac{i_{dm}}{2}$

We substitute these expressions into the expression for v_0 .

$$v_{o} = \left(i_{cm} + \frac{i_{dm}}{2}\right)R_2 - \left(i_{cm} - \frac{i_{dm}}{2}\right)R_1$$

Rearranging terms yields the desired answer.

$$v_{\rm o} = i_{\rm cm}(R_2 - R_1) + \frac{i_{\rm dm}}{2}(R_2 + R_1)$$

bonus) The common-mode term is eliminated by setting R_1 equal to R_2 .

$$R_1 = R_2$$