Ex:

The above filter circuit is intended to be complimentary to the filter designed in ECE 2240 Lab 4 . That is, it is designed to have low gain at frequencies where the filter in Lab 4 had high gain, and vice versa.
a) Find values of $L_{1} \neq 0$ and $L_{2} \neq 0$ such that the magnitude of the filter's transfer function, H, has the following values:

$$
\begin{aligned}
& |H(j \omega)|=1 \text { at } \omega=2 \pi \cdot 1 \mathrm{kHz} \\
& |H(j \omega)|=0 \text { at } \omega=2 \pi \cdot 3 \mathrm{kHz}
\end{aligned}
$$

b) Using the values of L_{1} and L_{2} you found in part (a), find the approximate magnitude of $H(j \omega)$ at $\omega=2 \pi \cdot 5 \mathrm{kr} / \mathrm{s}$. Your answer should be within 15% of the actual value.
bonus) Describe how increasing the value of R would affect the shape of the plot of the gain, $|H(j \omega)|$, versus ω.

SoL'N: a) The parallel combination of L_{1} and C, becomes an open circuit at resonant frequency, which is here called ω_{1}.

$$
\frac{1}{\frac{1}{j \omega_{1} L_{1}}+j \omega_{1} C}=\infty
$$

The solution is for the denominator to be zero, which is the same as the resonant frequency:

$$
\omega_{1}=\frac{1}{\sqrt{L_{1} C}}
$$

or

$$
\omega_{1}^{2}=\frac{1}{L_{1} C}
$$

When L_{1} and C open up, our gain will be unity, since no current will flow through the vertical impedance and there will be no voltage drop across R_{1}. So we want ω_{1} to be 1 kHz .

$$
L_{1}=\frac{1}{\omega_{1}^{2} C}=\frac{1}{(2 \pi)^{2}(1 \mathrm{k})^{2} 1 \mu} \mathrm{H}=\frac{1}{(2 \pi)^{2}} \mathrm{H} \cong 25.3 \mathrm{mH}
$$

For the second constraint, we want the gain to be zero, meaning that the entire vertical impedance should short out.

$$
\frac{1}{\frac{1}{j \omega_{2} L_{1}}+j \omega_{2} C}+j \omega_{2} L_{2}=0
$$

We solve for L_{2}, using $\omega_{2}=2 \pi \cdot 3 \mathrm{kr} / \mathrm{s}$ and the value of L_{1} from above.

$$
L_{2}=-\frac{1}{j \omega_{2}} \frac{1}{\frac{1}{j \omega_{2} L_{1}}+j \omega_{2} C}=-\frac{1}{\frac{1}{L_{1}}-\omega_{2}^{2} C}=\frac{1}{(2 \pi)^{2}(3 \mathrm{k})^{2} 1 \mu-\frac{1}{25 \mathrm{~m}}}
$$

or

$$
L_{2} \approx \frac{1}{(2 \pi)^{2}(9)-40} \approx 3.17 \mathrm{mH} \approx 3.2 \mathrm{mH}
$$

b) This is merely a calculation involving complex numbers. First, we simplify the transfer function expression.

$$
H(j \omega)=\frac{j \omega L_{2}+j \omega L_{1} \| \frac{1}{j \omega C}}{j \omega L_{2}+j \omega L_{1} \| \frac{1}{j \omega C}+R}=\frac{1}{1+\frac{R}{j \omega L_{2}+j \omega L_{1} \| \frac{1}{j \omega C}}}
$$

or

$$
H(j \omega)=\frac{1}{1+\frac{R}{j \omega L_{2}+\frac{1}{\frac{1}{j \omega L_{1}}+j \omega C}}}
$$

where

$$
\begin{aligned}
& j \omega C=j(2 \pi) 5 \mathrm{k}(1 \mu) \Omega \approx j 10 \pi \mathrm{~m} \Omega \\
& j \omega L_{1}=j(2 \pi) 5 \mathrm{k}(25 \mathrm{~m}) \Omega \approx j 250 \pi \Omega \\
& j \omega L_{2}=j(2 \pi) 5 \mathrm{k}(3.2 \mathrm{~m}) \Omega \approx j 32 \pi \Omega
\end{aligned}
$$

So we have the following calculation.

$$
H(j 2 \pi \cdot 5 \mathrm{kr} / \mathrm{s}) \approx \frac{1}{1+\frac{1 \mathrm{k}}{j 32 \pi+\frac{1}{\frac{1}{j 250 \pi}+j 10 \mathrm{~m} \pi}}}
$$

or

$$
H(j 2 \pi \cdot 5 \mathrm{kr} / \mathrm{s}) \approx \frac{1}{1+\frac{1 \mathrm{k}}{j 32 \pi+\frac{1}{-\frac{j 4 \mathrm{~m}}{\pi}+j 10 \mathrm{~m} \pi}}} \approx \frac{1}{1+\frac{1 \mathrm{k}}{j 32 \pi+\frac{1}{j 10 \mathrm{~m} \pi}}}
$$

or

$$
H(j 2 \pi \cdot 5 \mathrm{kr} / \mathrm{s}) \approx \frac{1}{1+\frac{1 \mathrm{k}}{j 32 \pi-j \frac{100}{\pi}}} \approx \frac{1}{1+\frac{1 \mathrm{k}}{j 32 \pi-j 32}}
$$

or

$$
H(j 2 \pi \cdot 5 \mathrm{kr} / \mathrm{s}) \approx \frac{1}{1+\frac{1 \mathrm{k}}{j 32 \pi-j 32}} \approx \frac{1}{1+\frac{1 \mathrm{k}}{j 66.7}} \approx \frac{1}{1-j 15} \approx j \frac{1}{15}
$$

or

$$
|H(j 2 \pi \cdot 5 \mathrm{kr} / \mathrm{s})| \approx \frac{1}{15}
$$

bonus) In general, increasing R reduces v_{o} and reduces the gain. The maximum gain at 1 kHz and the minimum gain at 3 kHz still exist with the same values as before. This means that the peak at 1 kHz will be narrower and the dip at 3 kHz will be broader.

