N. Cotter

Homework 1

U

1.

a) Solve the following simultaneous equations for v_1 and v_2 :

$$\frac{4(v_1 - v_2)}{3v_1 - 4v_2 = 14} + \frac{4(v_1 - v_2)}{7} + \frac{v_1}{2} = 29$$

b) Solve the following simultaneous equations for R1 and R2:

$$\frac{1}{\sqrt{R_1^2 + R_2}} = 3 \qquad \qquad \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{10}{7}$$

2.

Complete the following table showing products of prefixes for engineering units:

	n	μ	m		k	М
n		f				
μ	f			μ		
m		n				k
			m			
k				k	М	
Μ	m				G	

Note: $a = 10^{-18}$, $f = 10^{-15}$, $p = 10^{-12}$, $n = 10^{-9}$, $\mu = 10^{-6}$, $m = 10^{-3}$, blank = 10⁰, k = 10³, M = 10⁶, G = 10⁹, T = 10¹²

- 3. Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.
 - a) Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.

$$i(t) = 1 \text{ mA} + 2\cos(2\pi t + 30^\circ) \text{ mA}$$

- b) Find the energy consumed by the device described in (a) in the first minute. Note: Convert the 30° to radians before integrating.
- 4. Perform the following calculations, and write the answers with appropriate prefixes (such as m, m, k, etc.) for engineering units:

a)
$$v = 5.6 \text{ mA} \cdot 0.5 \text{ k}\Omega$$
 Note: $V = A \cdot \Omega$ b) $R = 1.2 \text{ k}\Omega + 700 \Omega$

Using the passive sign convention, complete the labeling of all currents and voltages for the resistors in the above circuit.

ANS: 1.b) One solution is $R_1 = 2.265$, $R_2 = 3.866$ 2. same values on diags / 3. w(t) = 90 mJ 4.a) v = 2.8 V 5. Answer not unique, current arrows must point to minus signs.