Homework 1
N. Cotter
\mathbf{U}

1. a) Solve the following simultaneous equations for v_{1} and v_{2} :

$$
3 v_{1}-4 v_{2}=14
$$

$$
\frac{4\left(v_{1}-v_{2}\right)}{7}+\frac{v_{1}}{2}=29
$$

b) Solve the following simultaneous equations for R1 and R2:

$$
\sqrt{R_{1}^{2}+R_{2}}=3 \quad \frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{10}{7}
$$

2. Complete the following table showing products of prefixes for engineering units:

\cdot	n	μ	m		k	M
n		f				
μ	f			μ		
m		n				k
			m			
k				k	M	
M	m				G	

Note: $a=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}=10^{-9}, \mu=10^{-6}, \mathrm{~m}=10^{-3}$, blank $=10^{0}, \mathrm{k}=10^{3}, \mathrm{M}=10^{6}, \mathrm{G}=10^{9}, \mathrm{~T}=10^{12}$
3. Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.
a) Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.

$$
i(t)=1 \mathrm{~mA}+2 \cos \left(2 \pi t+30^{\circ}\right) \mathrm{mA}
$$

b) Find the energy consumed by the device described in (a) in the first minute. Note: Convert the 30° to radians before integrating.
4. Perform the following calculations, and write the answers with appropriate prefixes (such as $\mathrm{m}, \mathrm{m}, \mathrm{k}$, etc.) for engineering units:
a) $v=5.6 \mathrm{~mA} \cdot 0.5 \mathrm{k} \Omega$ Note: $\mathrm{V}=\mathrm{A} \cdot \Omega$
b) $R=1.2 \mathrm{k} \Omega+700 \Omega$
5.

Using the passive sign convention, complete the labeling of all currents and voltages for the resistors in the above circuit.

ANS: 1.b) One solution is $R_{1}=2.265, R_{2}=3.866$ 2. same values on diags / $\quad 3 . w(t)=90 \mathrm{~mJ}$ 4.a) $v=2.8 \mathrm{~V} \quad$ 5. Answer not unique, current arrows must point to minus signs.

