N. Cotter
1.

$$
R=0.5 \Omega \quad L=1.5 \mu \mathrm{H} \quad C=1.5 \mu \mathrm{~F}
$$

a) Find the characteristic roots, s_{1} and s_{2}, for the above circuit.
b) Is the circuit over-damped, critically-damped, or under-damped? Explain.
c) If the L and C values in the circuit are decreased by a factor of two, (and R remains the same), will the circuit be over-damped, critically-damped, or under-damped? Justify your answer with calculations.
2.

$C=1 \mathrm{mF} \quad L=25 \mathrm{mH}$
A relay is driven by a 24 V power supply, as shown above. Power is turned off at $t=$ 0 . The current, $i(t)$, for $t>0$ has two terms that decay exponentially without oscillation. One term dies out quickly, and the other term dies out with a time constant of $\tau=10 \mathrm{~ms}$, as in $e^{-\mathrm{t} / 10 \mathrm{~ms}}$. Given the time constant and the information in the diagram above, find the value of R.
3.

After being open for a long time, the switch closes at $t=0$.
Find $i(t)$ for $t>0$.
4.

A 12 V power supply drives a long wire, (modeled as L and R_{1}), followed by a short wire, R_{2}, and a smoothing capacitor, C. There is a safety switch, located before the smoothing capacitor, to turn off the output at the remote end. The switch is closed for a long time before opening at $t=0$.

$$
L=2 \mu \mathrm{H} \quad R_{1}=2.0 \Omega \quad R_{2}=0.1 \Omega \quad C=200 \mu \mathrm{~F}
$$

a) Find the characteristic roots, s_{1} and s_{2}, for the above circuit.
b) Find $v_{\text {out }}$ for $t>0$.
5.

After being open for a long time, the switch closes at $t=0$.
a) Give expressions for the following in terms of no more than $v_{\mathrm{g}}, R_{1}, R_{2} L$, and C :

$$
i\left(t=0^{+}\right) \quad \text { and }\left.\quad \frac{d i(t)}{d t}\right|_{t=0^{+}}
$$

b) Find the numerical value of R_{2} given the following information:

$$
\begin{gathered}
R_{1}=150 \Omega \quad L=40 \mathrm{mH} \quad C=3.2 \mu \mathrm{~F} \\
\alpha=1250 \mathrm{r} / \mathrm{s} \quad \omega_{\mathrm{d}}=2500 \mathrm{r} / \mathrm{s}
\end{gathered}
$$

Answers:
1.a) Duplicate roots $=-2 / 3 \mathrm{Mr} / \mathrm{s}$. c) critically damped
2. $\mathrm{R}=12.5 \Omega$
3. $i(t)=-\frac{8}{9} e^{-160 \mathrm{k} t / s} \sin (120 \mathrm{k} t)+\frac{1}{3} \mathrm{~A}$
4.a) Partial answer: $s_{1} \approx-2.4 \mathrm{kr} / \mathrm{s}$ overdamped.
b) $v_{\text {out }}(t>0) \approx-12.06 e^{-2.4 \mathrm{k} / \mathrm{s} t}+0.06 e^{-1.05 \mathrm{M} / \mathrm{s} t}+12 \mathrm{~V}$ Find a way to handle approximations.
5.a) Partial answer: $\left.\frac{d i(t)}{d t}\right|_{t=0^{+}}=\frac{1}{R_{2}} \frac{i_{\mathrm{C}}\left(t=0^{+}\right)}{C}=-\frac{v_{\mathrm{g}}}{R_{2} C\left(R_{1}+R_{2}\right)} . \quad$ b) $R_{2}=125 \Omega$.

