Ex:

After being open for a long time, the switch closes at $t=0$.
a) Give expressions for the following in terms of no more than $v_{\mathrm{g}}, R_{1}, R_{2} L$, and C :

$$
i\left(t=0^{+}\right) \quad \text { and }\left.\quad \frac{d i(t)}{d t}\right|_{t=0^{+}}
$$

b) Find the numerical value of R_{2} given the following information:

$$
\begin{gathered}
R_{1}=150 \Omega \quad L=40 \mathrm{mH} \quad C=3.2 \mu \mathrm{~F} \\
\alpha=1250 \mathrm{r} / \mathrm{s} \quad \omega_{\mathrm{d}}=2500 \mathrm{r} / \mathrm{s}
\end{gathered}
$$

Sol'n: a) We start with the circuit at $t=0^{-}$ to determine the state of the L and C. At $t=0^{-}, L=$ wire, C open

At $t=0^{+}$, the switch is closed and $i_{L}\left(\mathrm{O}^{+}\right)=i_{L}\left(\mathrm{O}^{-}\right)$and $v_{C}\left(\mathrm{O}^{+}\right)=v_{C}\left(\mathrm{O}^{-}\right)$.
V_{g} and R_{1} are shorted out by the switch. This short divides the circuit into two halves that we may solve independently. The one we are interested in consists of R_{2}, L, and C.

$$
t=0^{+}: \quad i_{L}\left(O^{+}\right)=\frac{v_{g}}{R_{1}+R_{2}}=\text { current source }
$$

Because the C acts like a wire, all the current from the L will flow thru the C. So the current in R_{2} is zero. (Another way to see this is to observe that R_{2} has $o v=V_{C}$ across it, and by Ohm's (aw $i\left(0^{+}\right)=O V / R_{2}=O A$.)

So $i\left(0^{+}\right)=O A$.
For $\left.\frac{d i}{d t}\right|_{t=0^{+}}$, we first write $i(t)$ in terms of i_{L} and/or v_{C}.

We observe that v_{c} is across R_{2} :

$$
i(t)=v_{C} / R_{2}
$$

Now we differentiate the entire eq'n=

$$
\frac{d i(t)}{d t}=\frac{1}{R_{2}} \frac{d v_{c}}{d t}=\frac{1}{R_{2}} \frac{i c}{c}
$$

(We have used $i_{c}=c \frac{d v_{c}}{d t}$ rearranged.)
We evaluate i_{c} at $t=0^{+}$. We noted earlier that all the current from the L goes thru C. If we follow the direction of the current arrow for the L down, over, and up thru the c, we see that

$$
i_{c}\left(0^{+}\right)=-i_{L}\left(0^{+}\right)=\frac{-v g}{R_{1}+R_{2}} .
$$

Thus, $\left.\frac{d i(t)}{d t}\right|_{t=0^{+}}=\frac{1}{R_{2} C} i_{c}\left(0^{+}\right)$
or

$$
\left.\frac{d i(t)}{d t}\right|_{t=0} ^{+}=\frac{-V_{g}}{R_{2} C\left(R_{1}+R_{2}\right)}
$$

b) We use the circuit for $t>0$.

We have a parallel RLC.

$$
\alpha=\frac{1}{2 R_{2} C}, \quad \omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}, \quad \omega_{0}^{2}=\frac{1}{L C}
$$

Use $\alpha: \quad R_{2}=\frac{1}{2 \alpha C}=\frac{1}{2(1250) 3.2 \mu}=125 \Omega$.

