Ex: Find the Laplace transform of the following waveform:

$$
f(t)=t \cos (\omega t) e^{-a t}
$$

Sol'n: We start with the Laplace transform of the cosine and then apply the identity for multiplication by t and then the identity for multiplication by $e^{-a t}$.

$$
\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}
$$

Now we use the identity for multiplication by t :

$$
\mathcal{L}\{t v(t)\}=-\frac{d V(s)}{d s}
$$

Here, this gives the following result:

$$
\begin{aligned}
\mathcal{L}\{t \cos (\omega t)\} & =-\frac{d}{d s} \frac{s}{s^{2}+\omega^{2}}=-\frac{1}{s^{2}+\omega^{2}}+\frac{s 2 s}{\left(s^{2}+\omega^{2}\right)^{2}} \\
& =\frac{-\left(s^{2}+\omega^{2}\right)+2 s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}=\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}
\end{aligned}
$$

Now we apply the identity for multiplication by $e^{-a t}$:

$$
\mathcal{L}\left\{v(t) e^{-a t}\right\}=V(s+a)
$$

Here, this gives the following result:

$$
\mathcal{L}\left\{t \cos (\omega t) e^{-a t}\right\}=\frac{(s+a)^{2}-\omega^{2}}{\left[(s+a)^{2}+\omega^{2}\right]^{2}}
$$

