Ex: Find the Laplace transform of the following waveform:

$$
t \sin (\omega t) \cos (\omega t)
$$

SoL'n: We apply the trigonometric identity for the product of sine and cosine:

$$
\sin (A) \cos (A)=\frac{1}{2} \sin (2 A)
$$

Thus, we have the following result:

$$
\mathcal{L}\{\sin (\omega t) \cos (\omega t)\}=\frac{1}{2} \mathcal{L}\{\sin (2 \omega t)\}=\frac{1}{2} \frac{2 \omega}{s^{2}+(2 \omega)^{2}}=\frac{\omega}{s^{2}+(2 \omega)^{2}}
$$

Now we apply the identity for multiplication by t :

$$
\mathcal{L}\{t v(t)\}=-\frac{d V(s)}{d s}
$$

We obtain the following result:

$$
\begin{aligned}
\mathcal{L}\{t \sin (\omega t) \cos (\omega t)\} & =-\frac{d}{d s} \frac{\omega}{s^{2}+(2 \omega)^{2}}=-\frac{\omega(-1) 2 s}{\left(s^{2}+(2 \omega)^{2}\right)^{2}} \\
& =\frac{2 \omega s}{\left(s^{2}+(2 \omega)^{2}\right)^{2}}
\end{aligned}
$$

