Ex: \quad Find the inverse Laplace transform for the following expression:

$$
F(s)=\frac{5 s+18}{s^{2}+6 s}
$$

Sol'n: We use partial fractions. We factor the denominator to get the roots for the partial fraction terms.

$$
F(s)=\frac{5 s+18}{s^{2}+6 s}=\frac{5 s+18}{s(s+6)}=\frac{A}{s}+\frac{B}{s+6}
$$

We use the pole cover-up method to find A and B :

$$
\begin{aligned}
& A=\left.F(s) s\right|_{s=0}=\left.\frac{5 s+18}{s+6}\right|_{s=0}=\frac{18}{6}=3 \\
& B=\left.F(s)(s+6)\right|_{s=-6}=\left.\frac{5 s+18}{s}\right|_{s=-6}=\frac{-30+18}{-6}=2
\end{aligned}
$$

Thus, we have

$$
F(s)=\frac{3}{s}+\frac{2}{s+6}
$$

Taking the inverse transform, we have our answer:

$$
f(t)=\mathcal{L}^{-1}\left\{\frac{3}{s}+\frac{2}{s+6}\right\}=\left(3+2 e^{-6 t}\right) u(t)
$$

Note: By convention, we multiply our answer by $u(t)$ to remind ourselves that we cannot know what the value of $f(t)$ is before time zero, since the Laplace transform only takes into account values for $t>0^{-}$. The actual value of $f(t)$ is unknown, so we set it to zero.

NOTE: $\quad u(t) \cdot u(t)=u(t)$

