Ex: \quad Find the inverse Laplace transform for the following expression:

$$
F(s)=\frac{-3 s^{2}+99 s-1200}{s^{3}+11 s^{2}+100 s+1100}
$$

Sol'n: First, we need to factor the denominator. This could be done by using a computer or by using the formula for a cubic equation. We find that 11 is one factor, after which we have the following form:

$$
F(s)=\frac{-3 s^{2}+99 s-1200}{(s+11)\left(s^{2}+100\right)}
$$

Now we use partial fractions, but we write the complex root terms as a pure cosine plus a pure sine. The frequency of the cosine and sine will be $\sqrt{100}=10$.

$$
F(s)=\frac{A}{s+11}+\frac{B s+C(10)}{s^{2}+100}
$$

Putting terms over a common denominator gives

$$
F(s)=\frac{A\left(s^{2}+100\right)+(B s+10 C)(s+11)}{(s+11)\left(s^{2}+100\right)}
$$

Now we match the numerator of $F(s)$ with the original expression for $F(s)$.

$$
A\left(s^{2}+100\right)+(B s+10 C)(s+11)=-3 s^{2}+99 s-1200
$$

or

$$
A s^{2}+100 A+B s^{2}+11 B s+10 C s+110 C=-3 s^{2}+99 s-1200
$$

or

$$
(A+B) s^{2}+(11 B+10 C) s+100 A+110 C=-3 s^{2}+99 s-1200
$$

The coefficients for each power of s must match.

$$
\begin{aligned}
& A+B=-3 \\
& 11 B+10 C=99 \\
& 100 A+110 C=1200
\end{aligned}
$$

This will be tedious to solve, so we find A by the pole cover-up method.

$$
\begin{aligned}
A & =\left.F(s)(s+11)\right|_{s=-11}=\left.\frac{-3 s^{2}+99 s-1200}{s^{2}+100}\right|_{s=-11} \\
& =\frac{-3(121)-99(11)-1200}{121+100}=\frac{-2652}{221}=-12
\end{aligned}
$$

Now we easily find B and C.

$$
\begin{aligned}
& B=9 \\
& C=0
\end{aligned}
$$

So we have

$$
F(s)=-12 \frac{1}{s+11}+9 \frac{s}{s^{2}+100}
$$

and

$$
f(t)=\left[12 e^{-11 t}+9 \cos (10 t)\right] u(t)
$$

