Ex: \quad Plot the poles and zeros of $V(s)$ in the s plane.

$$
V(s)=\frac{s^{2}-s-6}{s^{3}+6 s^{2}+34 s}
$$

Sol'n: The poles are roots of the denominator, and the zeros are the roots of the numerator.

$$
V(s)=\frac{s^{2}-s-6}{s^{3}+6 s^{2}+34 s}=\frac{(s-3)(s+2)}{s(s+3+j 5)(s+3-j 5)}
$$

The zeros are 3 and -2 . The poles are $0,-3-j 5,-3+j 5$.
We denote the poles with X 's and the zeros with O 's in the complex s-plane:

