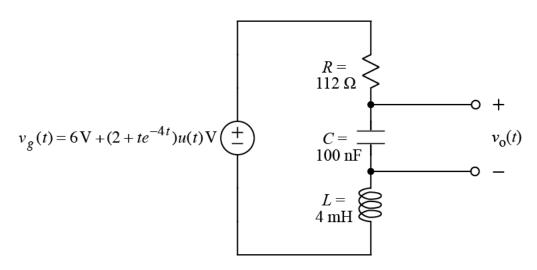
Ex:



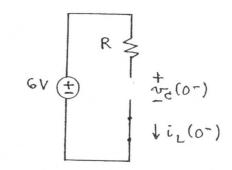
Note: The 6 V in the $v_g(t)$ source is always on.

- a) Write the Laplace transform, $V_g(s)$, of $v_g(t)$.
- b) Draw the *s*-domain equivalent circuit, including source $V_g(s)$, components, initial conditions for C's, and terminals for $V_o(s)$.
- c) Write an expression for $V_0(s)$.
- d) Apply the final value theorem to find $\lim_{t\to\infty} v_0(t)$.

Sol'N: a) $\mathcal{L} \{ 6V + (z + te^{-4t}) u(t) V \}$

$$= \frac{6}{5} + \frac{2}{5} + \frac{1}{(5+4)^2} = V_q(s)$$

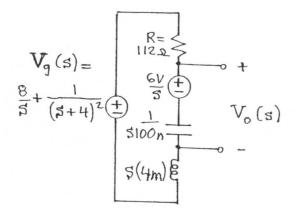
b) We find the initial conditions for L and C at t=0. Because we have 6 VDC input before t=0, we expect the circuit to reach equilibrium, meaning we may treat the L as a wire and the C as an open.



Because of the open circuit, $i_{\perp}(0^{-}) = 0 A$ and there is no v-drop across R. Thus, the GV is dropped across the open circuit, C.

 $v_{c}(o^{-}) = 6V$

Using a v-source for the initial conditions on C, we have the following s-domain model:



Note: The 6V initial conditions for C must s be included in Vo(s). c) We may use superposition to calculate V. (3).

With $V_g(s)$ on and 6V off (=wire) we have a V-divider. \overline{s}

$$V_{o1}(s) = V_{g}(s) \cdot \frac{1}{sc}$$
$$\frac{1}{sL + R + \frac{1}{sc}}$$

With $\frac{6V}{5}$ on and $V_g(s)$ off (= wire), we also have a V-divider. $V_0(s)$ equals the

V-drop across R and SL. $V_{o2}(s) = 6V + R$

$$5$$
 $$L+R+L$
 $$C$

Combining results, $V_o(s) = V_{ol}(s) + V_{o2}(s)$.

$$V_{o}(s) = \frac{V_{g}(s) \cdot \frac{1}{sc} + \frac{6V}{s}(sL+R)}{\frac{sL+R+\frac{1}{sc}}{sc}}$$

or

$$V_{o}(s) = \left[\frac{8}{5} + \frac{1}{(s+4)^{2}}\right] \frac{1}{s 100n} \frac{+6V}{5} \left[s(4m) + 112\right]$$

$$\frac{1}{s(4m) + 112} + \frac{1}{(s 100n)}$$

d) We use the initial value theorem:

 $\lim_{t\to\infty}v_o(t) = \lim_{s\to 0} sV_o(s)$

The first step is to clear the $\frac{1}{5}$ in the denominator by multiplying $V_0(s)$ by $\frac{3}{5}$.

$$sV_{o}(s) = s\left[\left[\frac{B}{s} + \frac{1}{(s+4)^{2}}\right]\frac{1}{c} + 6Y\left[sL+R\right]\right]$$

 $s^{2}L + Rs + 1/c$

$$\lim_{s \to 0} sV_{0}(s) = \frac{\left[8 + \frac{s}{(s+4)^{2}}\right]\frac{1}{c} + 6V(s)(sL+R)}{s^{2}L + Rs + 1/c}$$

Now we may set \$=0 without having any divide-by-zero problems.

$$\lim_{s \to 0} sV_{0}(s) = \begin{bmatrix} 8 + 2^{2} \\ 16 \end{bmatrix} \frac{1}{c} + 6V(6)R$$

$$0 + 0 + \frac{1}{c}$$

$$= 8 \frac{1}{c} = 8$$

$$\frac{1}{c}$$

Thus,
$$\lim_{t\to\infty} v_o(t) = 8 V$$