Ex:

a) Write the Laplace transform $I_{\mathrm{g}}(s)$ of $i_{\mathrm{g}}(t)$.
b) Write the Laplace transform $V_{\mathrm{o}}(s)$ of $v_{\mathrm{o}}(t)$. Be sure to include the effects of initial conditions, if they are nonzero.
c) Write a numerical time-domain expression for $v_{0}(t)$ where $t \geq 0$.

Sol'n: a) The Laplace transform depends only on what the input signal is from time 0 to ∞.

$$
I_{g}(t)=\mathcal{L}\left\{i_{g}(t)\right\}=\mathcal{L}\{0\} \mathrm{A}=0 \mathrm{~A}
$$

b) We find initial conditions by considering circuit at $t=0^{-}$. The circuit has a 3 A input and has reached equilibrium. Thus, the L acts like a wire, shorting out the R and C. Thus, the initial conditions on the C are zero and all of the input current flows through the L.

$$
i_{L}\left(0^{-}\right)=3 \mathrm{~A}
$$

Our circuit model includes initial conditions for the L but no input source, since the input source is zero:

The output voltage is found by using a voltage-divider formula. We observe that $V_{0}(s)$ is measured across the R and C. Thus, we may use a voltage-divider formula that avoids the need to add the voltage source to our answer. (An alternative approach is to use a voltage-divider to find the voltage across the L and then add the voltage source to our answer.)

$$
\begin{aligned}
V_{\mathrm{O}}(s) & =-1.5 \mathrm{~V} \frac{R+\frac{1}{s C}}{s L+R+\frac{1}{s C}}=-1.5 \mathrm{~V} \frac{25+\frac{200}{s}}{\frac{\mathrm{~s}}{2}+25+\frac{200}{s}} \\
& =-1.5 \mathrm{~V} \frac{50 s+400}{\mathrm{~s}^{2}+50 s+400} \\
& =-75 \mathrm{~V} \frac{s+8}{(s+10)(s+40)}
\end{aligned}
$$

c) The output voltage versus time is the inverse Laplace transform of $V_{\mathrm{O}}(s)$. We find a partial fraction expansion for the ratio of polynomials in s on the right side of the last expression above:

$$
\frac{s+8}{(s+10)(s+40)}=\frac{A}{s+10}+\frac{B}{s+40}
$$

Using the pole cover-up method, we compute A and B :

$$
\begin{aligned}
& A=\left.(s+10) \frac{s+8}{(s+10)(s+40)}\right|_{s=-10}=\frac{-10+8}{(-10+40)}=-\frac{1}{15} \\
& B=\left.(s+40) \frac{s+8}{(s+10)(s+40)}\right|_{s=-40}=\frac{-40+8}{(-40+10)}=\frac{16}{15}
\end{aligned}
$$

Substituting into $V_{\mathrm{o}}(s)$, we have the following partial fraction version:

$$
V_{\mathrm{O}}(s)=-5 \mathrm{~V}\left(\frac{-1}{s+10}+\frac{16}{s+40}\right)
$$

Taking the inverse Laplace transform yields our final answer:

$$
v_{\mathrm{o}}(t \geq 0)=\left[5 e^{-10 t}-80 e^{-40 t}\right] u(t) \mathrm{V}
$$

Note: We could omit the $u(t)$, but it reminds us that our answer only applies to $t \geq 0$.

