1. Give numerical answers to each of the following questions:
a) Find the value of $z=6-j 5+-3+j 3$.
b) Find the magnitude of $z=5+j 12$.
c) Find the conjugate of $z=\frac{2+j 2}{-j}$.
d) Find the value of $z=(6-j 5)(-3+j 3)$.
2. Plot each of the following complex numbers as vectors in the complex plane:
a) $j$
b) $\frac{1+j}{2}-\frac{1-j}{2}$
c) $\frac{1}{j^{3}}$
d) $\frac{1+j}{1-j}$
3. Give numerical answers to each of the following questions:
a) Rationalize $\frac{175-j 600}{-3+j 4}$. Express your answer in rectangular form.
b) Find the magnitude of $\frac{1}{2}+j \frac{\sqrt{3}}{2}$.
c) Find the real part of $\frac{(1+j)^{4}}{1+j \sqrt{3}}$.
4. Use a Taylor series for $e^{x}, \cos (x)$, and $\sin (x)$ to shown the following equation is valid: (This is Euler's formula.)

$$
e^{j x}=\cos x+j \sin x
$$

5. Differentiate both sides of Euler's formula to obtain an identity for the derivative of a complex exponential in terms of cosine and/or sine functions.
