Ex: Plot each of the following complex numbers as vectors in the complex plane:
a) j
b) $\frac{1+j}{2}-\frac{1-j}{2}$
c) $\frac{1}{j^{3}}$
d) $\frac{1+j}{1-j}$

Sol'n: All of the answers are equal to j after being simplified. The following plot is the answer for every question.

a) See above plot. Note that j has unit length and is at an angle of 90° to the real axis.
b) We use Euler's formula.

$$
e^{j \pi / 2}=\cos (\pi / 2)+j \sin (\pi / 2)=0+j 1=j
$$

c)

$$
\frac{1+j}{2}-\frac{1-j}{2}=\frac{1}{2}+j \frac{1}{2}-\frac{1}{2}+j \frac{1}{2}=j
$$

d) Note that $1 / j=-j$.

$$
\frac{1}{j^{3}}=(-j)^{3}=-j^{3}=--1 j=j
$$

e) We can rationalize the value. We do this by multiplying the numerator and denominator by the conjugate of the denominator.

$$
\frac{1+j}{1-j}=\frac{1+j}{1-j} \cdot \frac{1+j}{1+j}=\frac{1+j 2-1}{1^{2}+1^{2}}=\frac{j 2}{2}=j
$$

