1. a) Find the real part of $z=e^{j \pi / 2}$.
b) Find the rectangular form of $e^{j \pi / 2}$.
c) Find the rectangular form of $5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}$
d) Find the magnitude of $\left(\frac{j^{3}}{2+j 4}\right)\left(\frac{30 e^{j 129^{\circ}}}{2-j}\right)$.
e) Find the polar (magnitude and angle) form of $\sqrt{2+\sqrt{3}}-j \sqrt{2-\sqrt{3}}$
2. Given $\omega=10 \mathrm{krad} / \mathrm{s}$, for each of the following impedances, determine which of the following the impedance is from: a capacitor, an inductor, or a resistor. Also, find the value of that capacitor, inductor, or resistor. Recall that $z_{\mathrm{R}}=R, z_{\mathrm{L}}=j \omega L$, and $z_{\mathrm{C}}=1 / j \omega C$.
a) $1 \mathrm{k} \Omega$
b) $-j 50 \Omega$
c) $j 400 \Omega$
d) $-j 2 \mathrm{k} \Omega$
e) $j 8 \mathrm{k} \Omega$
3. Derive a symbolic expression for the impedance of an R, an L, and a C in parallel at frequency ω. Rationalize the expression so the denominator is real.
4. Write phasors (in both $\mathrm{A} e^{j \phi}$ and $\mathrm{A} \angle \phi$ notations) for each of the following signals:
a) $v(t)=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}$
b) $i(t)=7 \sin \left(\omega t-45^{\circ}\right) \mathrm{mA}$
c) $i(t)=50 \mathrm{nF} \cdot \frac{d}{d t} 4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}$
d) $\quad v(t)=17 \mu \mathrm{H} \cdot \frac{d}{d t} 7 \sin \left(60 t-45^{\circ}\right) \mathrm{mA}$
e) $v(t)=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}+3 \sin \left(100 t-150^{\circ}\right) \mathrm{V}$
5. Given $\omega=200 \mathrm{rad} / \mathrm{sec}$, write inverse phasors for each of the following signals:
a) $\mathbf{I}=6 e^{j 45^{\circ}} \mathrm{A}$
b) $\quad \mathbf{V}=j 9 \mathrm{~V}$
c) $\quad \mathbf{I}=-2 \mathrm{~A}$
d) $\mathbf{V}=6(1+j) e^{j 45^{\circ}} \mathrm{V}$
e) $\mathbf{I}=e^{3+j 45^{\circ}} \mathrm{A}=e^{3} \angle 45^{\circ} \mathrm{A}$
