Ex: \quad a) Find the real part of $z=e^{j \pi / 2}$.
b) Find the rectangular form of $e^{j \pi / 2}$.
c) Find the rectangular form of $5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}$
d) Find the magnitude of $\left(\frac{j^{3}}{2+j 4}\right)\left(\frac{30 e^{j 129^{\circ}}}{2-j}\right)$.
e) Find the polar (magnitude and angle) form of $\sqrt{2+\sqrt{3}}-j \sqrt{2-\sqrt{3}}$

Sol'n: a) Use Euler's formula:

$$
\operatorname{Re}\left[e^{j \pi / 2}\right]=\operatorname{Re}[\cos \pi / 2+j \sin \pi / 2]=\operatorname{Re}[0+j]=0
$$

b) From the answer to (a), we have

$$
e^{j \pi / 2}=j
$$

c) We first multiply the numbers in polar form.

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=5(8) \angle 25^{\circ}+35^{\circ}=40 \angle 60^{\circ}=40 e^{j 60^{\circ}}
$$

Now we convert to rectangular form using Euler's formula.

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=40 \cos \left(60^{\circ}\right)+j 40 \sin \left(60^{\circ}\right)=40 \cdot \frac{1}{2}+j 40 \frac{\sqrt{3}}{2}
$$

or

$$
5 \angle 25^{\circ} \cdot 8 \angle 35^{\circ}=20+j 20 \sqrt{3}
$$

d) We take the magnitude of each term of a product or quotient. We must keep sums as is, however.

$$
\left(\frac{j^{3}}{2+j 4}\right)\left(\frac{30 e^{j 129^{\circ}}}{2-j}\right)=\frac{\left|j^{3}\right|}{|2+j 4|} \frac{\left|30 e^{j 129^{\circ}}\right|}{|2-j|}=\frac{1^{3} \cdot 30}{\sqrt{2^{2}+4^{2}} \sqrt{2^{2}+1^{2}}}
$$

or

$$
\left(\frac{j^{3}}{2+j 4}\right)\left(\frac{30 e^{j 129^{\circ}}}{2-j}\right)=\frac{30}{\sqrt{20} \sqrt{5}}=3
$$

e) We use the Pythagorean theorem to find the magnitude:

$$
A={\sqrt{2+\sqrt{3}^{3}}}^{2}+\sqrt{2-\sqrt{3}}^{2}=2+\sqrt{3}+2-\sqrt{3}=4
$$

The tangent of the angle is the imaginary part over the real part.

$$
\phi=\tan ^{-1} \frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=15^{\circ}
$$

Our answer:

$$
\sqrt{2+\sqrt{3}}-j \sqrt{2-\sqrt{3}}=4 \angle 15^{\circ}
$$

