Ex: Write phasors (in both $\mathrm{A} e^{j \phi}$ and $\mathrm{A} \angle \phi$ notations) for each of the following signals:
a) $v(t)=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}$
b) $i(t)=7 \sin \left(\omega t-45^{\circ}\right) \mathrm{mA}$
c) $i(t)=50 \mathrm{nF} \cdot \frac{d}{d t} 4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}$
d) $\quad v(t)=17 \mu \mathrm{H} \cdot \frac{d}{d t} 7 \sin \left(60 t-45^{\circ}\right) \mathrm{mA}$
e) $v(t)=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}+3 \sin \left(100 t-150^{\circ}\right) \mathrm{V}$

Sol'n: a) The magnitude of the phasor is the magnitude of the sinusoid, and the phase angle in the exponent of the phasor is the phase shift of the cosine waveform.

$$
\mathrm{P}\left[v(t)=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}\right]=4 e^{j 30^{\circ}} \mathrm{V}
$$

b) The phasor of $\sin (\omega t)$ is $-j$.

$$
\mathrm{P}\left[i(t)=7 \sin \left(\omega t-45^{\circ}\right) \mathrm{mA}\right]=7(-j) e^{-j 45^{\circ}} \mathrm{mA}
$$

or

$$
\mathrm{P}[i(t)]=7 e^{-j 90^{\circ}} e^{-j 45^{\circ}} \mathrm{mA}=7 e^{-135^{\circ}} \mathrm{mA}
$$

or

$$
\mathrm{P}[i(t)]=7 \angle-135^{\circ} \mathrm{mA}
$$

c) When we take a derivative, we multiply by $j \omega$.

$$
\mathrm{P}\left[i(t)=50 \mathrm{nF} \cdot \frac{d}{d t} 4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}\right\rfloor=50 \mathrm{nF} \cdot \mathrm{j} \omega \cdot 4 e^{j 30^{\circ}} \mathrm{V}
$$

or

$$
\mathrm{P}[i(t)]=50 \mathrm{nF} \cdot j 100 \mathrm{~s}^{-1} \cdot 4 e^{j 30^{\circ}} \mathrm{V}=j 20 e^{j 30^{\circ}} \mu \mathrm{A}=20 e^{j 90^{\circ}} e^{j 30^{\circ}} \mu \mathrm{A}
$$

or

$$
\mathrm{P}[i(t)]=20 e^{j 120^{\circ}} \mu A
$$

d) Here, we have multiplication by $j \omega$ for the derivative and $-j$ for $\sin ()$.

$$
\begin{aligned}
& \mathrm{P}\left[v(t)=17 \mu \mathrm{H} \cdot \frac{d}{d t} 7 \sin \left(60 t-45^{\circ}\right) \mathrm{mA}\right]=17 \mu \mathrm{H} \cdot j 60 \mathrm{~s}^{-1} \cdot(-j 7) e^{-j 45^{\circ}} \mathrm{mA} \\
& \mathrm{P}[v(t)]=7.14 e^{-j 45^{\circ}} \mu \mathrm{V}
\end{aligned}
$$

e) We convert the two waveforms to phasors before adding.

$$
\begin{aligned}
\mathrm{P}[v(t) & \left.=4 \cos \left(100 t+30^{\circ}\right) \mathrm{V}+3 \sin \left(100 t-150^{\circ}\right) \mathrm{V}\right] \\
& =4 e^{j 30^{\circ}}+3(-j) e^{-j 150^{\circ}} \mathrm{V}
\end{aligned}
$$

or

$$
\mathrm{P}[v(t)]=4 e^{j 30^{\circ}}+3 e^{-j 90^{\circ}} e^{-j 150^{\circ}} \mathrm{V}=4 e^{j 30^{\circ}}+3 e^{-j 240^{\circ}} \mathrm{V}
$$

We could covert each term to rectangular form and sum, but a more efficient approach is to observe that the vectors are perpendicular. The first phasor is a vector of length 4 at an angle of 30° to the real axis. Adding the second phasor to the first creates a 4, 3, 5 triangle. The hypotenuse is the total phasor and has length 5 . The angle of the phasor is 30° from the 1 st phasor plus the angle in the $4,3,5$ triangle between the sides of length 4 and 5.

$$
\mathrm{P}[v(t)]=5 \angle\left[30^{\circ}+\tan ^{-1}(3 / 4)\right] \mathrm{V}=5 \angle 30^{\circ}+36.9^{\circ} \mathrm{V}=5 \angle 66.9^{\circ} \mathrm{V}
$$

