Ex: a) Find the total impedance of the circuitry shown below if $\omega=1000 \mathrm{rad} / \mathrm{s}$.

b) Given $\omega=50 \mathrm{krad} / \mathrm{s}$, find z_{ab}.

Sol'n: a) We convert to the frequency-domain by computing impedances.

$$
\begin{aligned}
& j \omega L=j 1 \mathrm{k} \cdot 250 \mathrm{~m} \Omega=j 250 \mathrm{k} \Omega \\
& \frac{1}{j \omega C}=\frac{1}{j 1 \mathrm{k} \cdot 4 \mu} \Omega=-j 250 \Omega \\
& j \omega L=j 1 \mathrm{k} \cdot 100 \mathrm{~m} \Omega=j 100 \mathrm{k} \Omega \\
& \frac{1}{j \omega C}=\frac{1}{j 1 \mathrm{k} \cdot 10 \mu} \Omega=-j 100 \Omega
\end{aligned}
$$

The circuit diagram in the frequency-domain is shown below.

The series L and C in series at the top left of the circuit sum to zero, which means they cancel out to act like a wire. The parallel L and C at the right combine to create an equivalent impedance of infinity, or an open circuit.

$$
j 100\|-j 100 \Omega=j 100 \Omega \cdot 1\|-1=j 100 \Omega \cdot \frac{1(-1)}{1-1}=j 100 \Omega \cdot \frac{1}{0}=\infty \Omega
$$

Thus, the L and C on the right disappear. We are left with a simple circuit consisting of only two resistors:

The equivalent impedance is obviously $10 \mathrm{k} \Omega$.

$$
z_{\mathrm{tot}}=10 \mathrm{k} \Omega
$$

satin:
we compute impedances using

$$
z_{R}=R, \quad z_{L}=j \omega L, \quad z_{C}=\frac{i}{j \omega c}=\frac{-j}{\omega C}
$$

$$
\therefore \frac{2}{4}=j \cdot 50 \mathrm{k} \mathrm{rad} / \mathrm{s}, 480 \mu \mathrm{H}
$$

$$
n=j 50 \cdot 480 \mathrm{man}
$$

$$
\mathfrak{u}=j \quad z \text { Li }
$$

$$
z_{c}=\frac{-j}{50} \frac{\mathrm{k} \cdot \mathrm{ad} / \overrightarrow{\mathrm{a}} \cdot 5 \mu \mathrm{~F}}{}
$$

$$
=\frac{-j}{230 \mathrm{~m}} \mathrm{i}
$$

$$
=\cdots+4
$$

Now we draw the frequency (or s-domain) model:

We have $z_{a b}=(8-j 4-\Omega) \mid(7+j 24 s)$

$$
\begin{aligned}
& =\frac{(8-j 4)(7+j 24) \Omega}{3-j 4+7+j 24} \\
& =\frac{\sqrt{18^{2}+4^{2}} \tan ^{-1}(-4 / 8) \sqrt{7^{2}+24^{2}} \tan ^{-1}(24 / 7) \Omega}{15+j 20} \\
& =\frac{4 \sqrt{5^{1}} \angle-26.6^{\circ} \cdot-25 \angle 73.7^{\circ}}{25 \angle 53.1^{\circ}} \Omega \\
& =4 \sqrt{5} \angle-26.6^{\circ}+73,7^{\circ}-53.1^{6} \Omega \\
& z_{a b}=4 \sqrt{5} \angle-6^{\circ} \Omega
\end{aligned}
$$

