Ex:

Find a frequency, ω, that causes z_{ab} to have a phase angle of -45°, (i.e., imaginary part is the negative of the real part). Hint: use admittance, (the reciprocal of impedance).
sol'n: For single components in parallel, using admittance $=1 / z$ is helpful.
$\frac{1}{z_{a b}}=\frac{1}{z_{2}}+\frac{1}{z_{2}}+\frac{1}{z_{1}}$
Here, we have $z_{c}=\frac{1}{i u c}=-\frac{j}{\omega c}$
$=\frac{-j a}{w \cdot \frac{1}{144 m}}=\frac{-j}{w} i 44 \mathrm{~m}$

$$
z_{L} \simeq j \omega L=j \omega \cdot 250 \mu
$$

IT $\left\langle z_{a b}=-45^{\circ}\right.$, then $z_{a b}=k(1-j)$ where te is a positive real number.

Then

$$
-\frac{1}{z_{0 i b}}=\frac{1}{\sqrt{e(1-j i}}=\frac{1+i}{1(1-j)(i+j)}=\frac{1+j}{2 k}
$$

Thus,$<\frac{1}{\xi_{a b}}=45^{\circ}$ and $\operatorname{Re}\left[\frac{1}{z_{a b}}\right]=\operatorname{Im}\left[\frac{1}{\sum_{a b}}\right]$.

We observe that the values of $\frac{i}{z_{e}}$ and $\frac{i}{z_{L}}$ are pure imaginary and constitute the entire imaginary part of $\frac{1}{z_{i n}}$:

$$
\begin{aligned}
\operatorname{Im}\left[\frac{1}{z_{a b}}\right] & =\operatorname{Im}\left[\frac{1}{z_{c}}+\frac{1}{z_{L}}\right] \\
& =\operatorname{Im}\left[j \omega c+\frac{1}{j \omega L}\right] \\
& =\operatorname{Im}\left[j \omega c-\frac{j}{\omega L}\right] \\
& =\omega C-\frac{1}{\omega L}
\end{aligned}
$$

Note: Imp[] has a reni value. $\operatorname{Im}[a+j b]=6$ rather than $j b$.

The real part of trail consists entirely of $\frac{1}{R}$:

$$
\operatorname{Re}\left[\frac{1}{R \mathrm{nb}}\right]=\operatorname{Re}\left[\begin{array}{l}
\left.\frac{1}{R}\right]=\frac{1}{R}, ~
\end{array}\right]
$$

Now we solve $\operatorname{Re}\left[\frac{1}{z_{a i}}\right]=\operatorname{Im}\left[\frac{1}{z_{a b}}\right]$ or $\quad \frac{1}{R}=\omega \mathrm{C}-\frac{1}{\omega L}$.
or $\quad \frac{1}{R C} \omega=\omega^{2}-\frac{1}{4 C}$
or $\quad \omega^{2}-\frac{1}{R C} \omega-\frac{1}{L C}=0$
or $\quad \omega=\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}+\frac{1}{L C}}$
Note: since $u>0$, we use only $+i^{\prime-1}$.

$$
\omega=\frac{1}{2 R C}+\sqrt{\left(\frac{1}{2 R C}\right)^{2}+\frac{1}{L C}}
$$

Now we calculate values.

$$
\begin{aligned}
& -\frac{1}{2 R C}=\frac{1}{2(2.88) \frac{1 m}{144} s}=\frac{1 k \cdot 1 k}{2\left(\frac{(2.88 k)}{144}\right.} \\
& \frac{1}{2 R C}=-\frac{1 M}{40 \xi}=25 k / 5 \\
& \frac{1}{L C}=\frac{1}{250 \mu \cdot \frac{1}{1+4} m s^{2}} \\
& 1 \Rightarrow \frac{144}{250} \mathrm{G} / \mathrm{s}^{2} \cdot \frac{4}{4} \\
& H=4(1+4) \mathrm{M} / \mathrm{s}^{2} \\
& \frac{1}{L C}=(2+k / G)^{2}
\end{aligned}
$$

Using values, we have the following:
$\omega=25 k / 5+\sqrt{(25 k / s)^{2}+(2+k / d)^{2}}$
$\omega \doteq 2.5 \mathrm{k} / \mathrm{s}+34.7 \mathrm{k} / \mathrm{s}$
$\omega \pm 54.7 \mathrm{k} / \mathrm{s}$

