Ex:

a) Find time-domain expressions for the waveforms of the voltages across the R and L in the above circuit.

b) Find time-domain expressions for the waveforms of the currents through the R and C in the above circuit.

Sol'n: a) First, we transform the circuit to the frequency-domain.

$$
j \omega L=j 1 \mathrm{M} \cdot 1 \mathrm{~m} \Omega=j 1 \mathrm{k} \Omega
$$

Second, we use a voltage-divider formula to find the voltage across the R and L.

$$
\mathbf{V}_{\mathrm{R}}=4 \angle 0^{\circ} \mathrm{V} \frac{3 \mathrm{k} \Omega}{3 \mathrm{k} \Omega+j 1 \mathrm{k} \Omega}=4 \mathrm{~V} \frac{3}{3+j 1}=4 \mathrm{~V} \frac{3}{3+j} \frac{3-j}{3-j}
$$

or

$$
\mathbf{V}_{\mathrm{R}}=12 \mathrm{~V} \frac{3-j}{10}=1.2 \mathrm{~V} \cdot \sqrt{3^{2}+1^{2}} \angle \tan ^{-1}\left(\frac{-1}{3}\right)=1.2 \sqrt{10} \angle-18.4^{\circ} \mathrm{V}
$$

or

$$
\mathbf{V}_{\mathrm{R}}=3.79 \angle-18.4^{\circ} \mathrm{V}
$$

The calculation for the inductor voltage is similar to the above.

$$
\mathbf{V}_{\mathrm{L}}=4 \angle 0^{\circ} \mathrm{V} \frac{j 1 \mathrm{k} \Omega}{3 \mathrm{k} \Omega+j 1 \mathrm{k} \Omega}=4 \mathrm{~V} \frac{j 1}{3+j 1}=4 \mathrm{~V} \frac{j}{3+j} \frac{3-j}{3-j}
$$

or

$$
\mathbf{V}_{\mathrm{L}}=4 \mathrm{~V} \frac{1+j 3}{10}=0.4 \mathrm{~V} \cdot \sqrt{1^{2}+3^{2}} \angle \tan ^{-1}\left(\frac{3}{1}\right)=0.4 \sqrt{10} \angle 71.6^{\circ} \mathrm{V}
$$

or

$$
\mathbf{V}_{\mathrm{L}}=1.26 \angle 71.6^{\circ} \mathrm{V}
$$

Third, we take the inverse phasor.

$$
\begin{aligned}
& v_{\mathrm{R}}(t)=1.2 \sqrt{10} \cos \left(1 \mathrm{M} t-18.4^{\circ}\right) \mathrm{V} \\
& v_{\mathrm{L}}(t)=0.4 \sqrt{10} \cos \left(1 \mathrm{M} t+71.6^{\circ}\right) \mathrm{V}
\end{aligned}
$$

b) First, we transform the circuit to the frequency-domain.

$$
\frac{1}{j \omega C}=\frac{1}{j 10 \mathrm{k} \cdot 10 \mathrm{n}} \Omega=-j 10 \mathrm{k} \Omega
$$

Second, we use a current-divider formula to find the current through the R and C.

$$
\mathbf{I}_{\mathrm{R}}=2 \angle 30^{\circ} \mathrm{A} \frac{-\mathrm{j} 10 \mathrm{k} \Omega}{12 \mathrm{k} \Omega-j 10 \mathrm{k} \Omega}=2 \angle 30^{\circ} \mathrm{A} \frac{10 \angle-90^{\circ}}{\sqrt{12^{2}+10^{2}} \angle \tan ^{-1}\left(\frac{-10}{12}\right)} \mathrm{A}
$$

or

$$
\mathbf{I}_{\mathrm{R}}=\frac{10}{\sqrt{61}} \angle 30^{\circ}-90^{\circ}-\tan ^{-1}\left(\frac{-10}{12}\right) \mathrm{A}=\frac{10}{\sqrt{61}} \angle-20.2^{\circ} \mathrm{A}
$$

The calculation for the capacitor current is similar to the above.

$$
\mathbf{I}_{\mathrm{C}}=2 \angle 30^{\circ} \mathrm{A} \frac{12 \mathrm{k} \Omega}{12 \mathrm{k} \Omega-j 10 \mathrm{k} \Omega}=2 \angle 30^{\circ} \mathrm{A} \frac{12}{\sqrt{12^{2}+10^{2}} \angle \tan ^{-1}\left(\frac{-10}{12}\right)} \mathrm{A}
$$

or

$$
\mathbf{I}_{\mathrm{C}}=\frac{12}{\sqrt{61}} \angle 30^{\circ}-\tan ^{-1}\left(\frac{-10}{12}\right) \mathrm{A}=\frac{10}{\sqrt{61}} \angle 69.8^{\circ} \mathrm{A}
$$

Third, we take the inverse phasor.

$$
\begin{aligned}
& i_{R}(t)=\frac{10}{\sqrt{61}} \cos \left(10 \mathrm{k} t-20.2^{\circ}\right) \mathrm{A} \\
& i_{C}(t)=\frac{12}{\sqrt{61}} \cos \left(10 \mathrm{k} t+69.8^{\circ}\right) \mathrm{A}
\end{aligned}
$$

