Ex:

a) Determine the transfer function $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}$.
b) Plot $|H(j \omega)| \equiv\left|V_{\mathrm{o}} / V_{\mathrm{i}}\right|$ versus ω.
c) Find the value of ω where $|\operatorname{Re}(H(j \omega))|=|\operatorname{Im}(H(j \omega))|$.

Sol'n: a) We transform the circuit to the frequency domain.

The voltage-divider formula gives the transfer function, starting with the formula for V_{o} :

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{i} \frac{j \omega L}{R+j \omega L}
$$

Dividing by V_{i} gives the transfer function:

$$
H(j \omega)=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{i}}=\frac{j \omega L}{R+j \omega L}
$$

A better form is obtained by dividing top and bottom by $j \omega L$:

$$
H(j \omega)=\frac{1}{1+\frac{R}{j \omega L}}=\frac{1}{1-j \frac{R}{\omega L}}=\frac{1}{1-j \frac{20 \mathrm{k}}{\omega 200 \mathrm{n}}}=\frac{1}{1-j \frac{100 \mathrm{G}}{\omega}}
$$

b) The plot is generated with the following SciLab code. (SciLab is open source software.)

```
// ECE2260F11_HW3p1soln.sce
/// Plot of transfer function of RL high-pass filter.
j = %i // for complex numbers
R = 20e3;
L = 200e-9;
omega = 1e6:2e9:200e9;
H = 1 ./ (1 - j*R./(omega*L));
omegaC = 100e9; // plot cutoff freq
Hc = 1 ./ (1 - j*R./(omegaC*L));
plot(omega,abs(H))
plot(omegaC,abs(Hc),'+')
xlabel('omega')
```

c) We rationalize the transfer function formula from the answer to (a).

$$
H(j \omega)=\frac{1}{1-j \frac{100 \mathrm{G}}{\omega}} \cdot \frac{1+j \frac{100 \mathrm{G}}{\omega}}{1+j \frac{100 \mathrm{G}}{\omega}}=\frac{1+j \frac{100 \mathrm{G}}{\omega}}{1+\left(\frac{100 \mathrm{G}}{\omega}\right)^{2}}
$$

The denominator is real and, although it depends on frequency, will scale both the real and imaginary parts of $H(j \omega)$ equally. Thus, we may ignore the denominator. Thus, we find where the real and imaginary parts of the numerator are equal.

$$
1=\frac{100 \mathrm{G}}{\omega}
$$

or

$$
\omega=100 \mathrm{G}
$$

This is the cutoff frequency.

