1.

$$
R_{1}=120 \mathrm{k} \Omega \quad R_{2}=130 \mathrm{k} \Omega \quad C=200 \mathrm{nF}
$$

a) Determine the transfer function $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}$.
b) Find ω such that $\left|V_{o} / V_{i}\right|=1 / \sqrt{2}$.
c) Find ω such that $\angle V_{o} / V_{i}=45^{\circ}$.
d) Is it true that $\left|\frac{1}{j \omega C}\right|=\left|R_{1}+R_{2}\right|$ at $\omega=\omega_{C}$?
2.

$$
R_{1}=150 \Omega \quad R_{2}=750 \Omega \quad L=1 \mu \mathrm{H}
$$

a) Determine the transfer function $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}$. Hint: switch the order of R_{1} and L and use a voltage divider.
b) Express the maximum of $\left|\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right|$ as a function of R_{1} and R_{2}.
3.

The above circuit is part of a simple crossover network for driving a midrange speaker having an impedance of 8Ω. The circuit is described at the following web site: http://www.termpro.com/articles/xover2.html. A more in-depth discussion of crossover networks may be found at http://sound.westhost.com/lr-passive.htm.
a) The web site describing the above bandpass filter suggests using cutoff frequencies of $f_{\mathrm{C} 1}=130 \mathrm{~Hz}$ and $f_{\mathrm{C} 2}=4 \mathrm{kHz}$. Determine the L and C values that yield these cutoff frequencies.
b) Plot $I V_{o} / V_{i} \mid$ versus ω.
4.

$$
R_{1}=18 \Omega \quad R_{2}=48 \Omega \quad R_{3}=144 \Omega \quad C=31.25 \mu \mathrm{~F} \quad L=2 \mathrm{mH}
$$

a) What type of filter is the above circuit: a band-pass or a band-reject? Hint: Use a Thevenin equivalent to combine all the R's into one.
For the filter shown above, calculate the following quantities:
b) ω_{0}
c) $\omega_{\mathrm{C} 1}$ and $\omega_{\mathrm{C} 2}$
d) β and Q
5.

Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the band-pass $|\mathrm{H}(j \omega)|$ vs. ω shown above. That is:
$\max _{\omega}|H(j \omega)|=\frac{1}{4}$ and occurs at $\omega_{0}=10 \mathrm{Mr} / \mathrm{s}$
The bandwidth, β, of the filter is $500 \mathrm{kr} / \mathrm{s}$.

$$
|H(j \omega)|=0 \text { at } \omega=0 \quad \text { and } \quad \lim _{\omega \rightarrow \infty}|H(j \omega)|=0
$$

