1.

- a) Determine the transfer function V_0/V_1 .
- b) Find ω such that $|V_o / V_i| = 1 / \sqrt{2}$.
- c) Find ω such that $\angle V_o / V_i = 45^\circ$.

d) Is it true that
$$\left|\frac{1}{j\omega C}\right| = |R_1 + R_2|$$
 at $\omega = \omega_C$?

2.

- $R_1 = 150 \ \Omega$ $R_2 = 750 \ \Omega$ $L = 1 \ \mu H$
- a) Determine the transfer function V_0/V_i . **Hint:** switch the order of R_1 and L and use a voltage divider.
- b) Express the maximum of $|V_0 / V_i|$ as a function of R_1 and R_2 .

The above circuit is part of a simple crossover network for driving a midrange speaker having an impedance of $\$\Omega$. The circuit is described at the following web site: <u>http://www.termpro.com/articles/xover2.html</u>. A more in-depth discussion of crossover networks may be found at <u>http://sound.westhost.com/lr-passive.htm</u>.

- a) The web site describing the above bandpass filter suggests using cutoff frequencies of $f_{C1} = 130$ Hz and $f_{C2} = 4$ kHz. Determine the *L* and *C* values that yield these cutoff frequencies.
- R_1 + R_2 $R_3 \ge$ vi vo С $R_2 = 48 \ \Omega$ $R_3 = 144 \ \Omega$ $C = 31.25 \ \mu F$ $L = 2 \ mH$ $R_1 = 18 \Omega$ What type of filter is the above circuit: a band-pass or a band-reject? a) Hint: Use a Thevenin equivalent to combine all the R's into one. For the filter shown above, calculate the following quantities: c) ω_{C1} and ω_{C2} β and Q b) d) ω $R = 300 \Omega$ + vi v_o |H| $\beta = 500 \text{k r/s}$ $\frac{1}{4}$ ω $\dot{\omega}_{o} = 10 \text{M r/s}$
 - Given the resistor connected as shown and using not more than one each R, L, and C in the dashed-line box, design a circuit to go in the dashed-line box that will produce the **band-pass** $|H(j\omega)|$ vs. ω shown above. That is:
 - $\begin{aligned} \max_{\omega} |H(j\omega)| &= \frac{1}{4} \text{ and occurs at } \omega_0 = 10 \text{ M r/s} \\ \text{The bandwidth, } \beta, \text{ of the filter is 500k r/s.} \\ |H(j\omega)| &= 0 \text{ at } \omega = 0 \text{ and } \lim_{\omega \to \infty} |H(j\omega)| = 0 \end{aligned}$

4.

5.

- b) Plot $|V_0/V_i|$ versus ω .