Ex: Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.
a) Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.

$$
i(t)=1 \mathrm{~mA}+2 \cos \left(2 \pi t+30^{\circ}\right) \mathrm{mA}
$$

b) Find the energy consumed by the device described in (a) in the first minute. Note: Convert the 30° to radians before integrating.

SoL'n: a) Power is the product of voltage and current.

$$
p(t)=i(t) \cdot 1.5 \mathrm{~V}=1.5 \mathrm{~mW}+3 \cos \left(2 \pi t+30^{\circ}\right) \mathrm{mW}
$$

b) Energy is the integral of power with respect to time. The product of power and time is energy (or work). The units for energy are Joules.

$$
w(t=60 s)=\int_{0}^{60} p(t) d t=90 \mathrm{~mJ}+\left.\frac{3 \sin \left(2 \pi t+30^{\circ}\right)}{2 \pi}\right|_{0} ^{60} \mathrm{~mJ}=90 \mathrm{~mJ}
$$

Note: The integral of the $\cos ()$ term is zero since the $\sin ()$ function is evaluated at times where the total angles differ by an integer multiple of 2π and are, therefore, the same.

