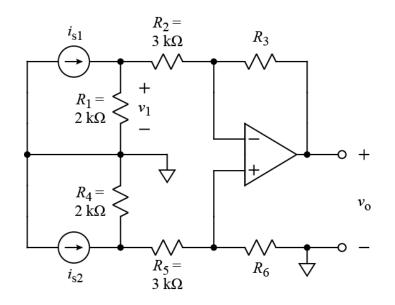
Ex:

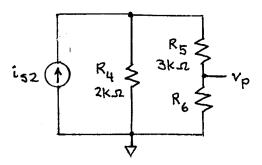


- a) The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters i_{s1} , i_{s2} , R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 .
- b) Assuming $R_1 = R_4$, $R_2 = R_5$, and $R_3 = R_6$ derive a symbolic expression for v_0 in terms of common mode and differential input voltages:

$$i_{\rm cm} \equiv \frac{(i_{s2} + i_{s1})}{2}$$
 and $i_{\rm dm} \equiv i_{s2} - i_{s1}$

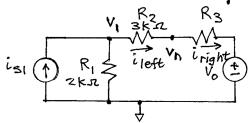
The expression must contain not more than the parameters i_{cm} , i_{dm} , R_1 , R_2 , and R_3 . Write the expression as i_{cm} times a term plus i_{dm} times a term.

soln: a) First, we find the voltage, vp, at the + input of the op-amp. The circuit for finding vp may be drawn as shown below.



Using the i-divider formula, we
find the current flowing through
$$R_5$$
 and R_6 . We multiply this
enrrent by R_6 to get V_p :
 $V_p = i_{SZ} \frac{R_4}{R_4 + R_5 + R_6}$. R6
Second, we set the voltage, v_n , at the
- input of the op-amp equal to v_p .
 $V_p = v_p = i_{SZ} \frac{R_4 R_6}{R_4 + R_5 + R_6}$

Third, we find an expression for the current i left flowing toward the - input of the op-amp from the left. (This current is the current in R₂ measured with the arrow pointing to the right.) We also make sure that we use in in the expression for i (eff.



Using node-voltage to find v, we have

 $-ig_{1} + \frac{V_{1}}{R_{1}} + \frac{V_{1} - V_{n}}{R_{2}} = 0A$

or

$$v_{l}\left(\frac{1}{R_{l}}+\frac{1}{R_{2}}\right) = is_{l} + \frac{v_{n}}{R_{2}}$$

or
$$v_{l} = \left(is_{l} + \frac{v_{n}}{R_{2}}\right) R_{l} \parallel R_{2}$$

The value of ileft will be

$$\dot{i}_{left} = \frac{V_{1} - V_{n}}{R_{2}} = \begin{pmatrix} i_{s_{1}} + V_{n} \\ R_{2} \end{pmatrix} \frac{R_{1} ||R_{2} - V_{n}|}{R_{2}}$$

$$= i_{s_{1}} \frac{R_{1}}{R_{1} + R_{2}} + \frac{V_{n}}{R_{2}} \left(\frac{R_{1}}{R_{1} + R_{2}} - 1 \right)$$

$$= i_{s_{1}} \frac{R_{1}}{R_{1} + R_{2}} + \frac{V_{n}}{R_{2}} \left(\frac{R_{1}}{R_{1} + R_{2}} - \frac{R_{1} + R_{2}}{R_{1} + R_{2}} \right)$$

$$= i_{s_{1}} \frac{R_{1}}{R_{1} + R_{2}} - \frac{V_{n}}{R_{1} + R_{2}}$$

Note: We could obtain the same result by converting is1 and R1 into a Thevenin equivalent with voltage is1 R1 and resistance R1. The current is then obtained directly as the above formula.

Note: We could also obtain the same result by treating V_n as a source voltage and using superposition of sources is and V_n . We would obtain i left: $= i_{SI} \frac{R_I}{R_I}$ (i-divider) $\frac{R_I + R_2}{R_I + R_2}$

Fourth, we find an expression for the current, iright, flowing to the right in Rz. We make sure we use vn and vo in this expression.

$$i_{right} = \frac{v_n - v_o}{R_3}$$

Fifth, we equate
$$i_{left}$$
 and i_{right}
and solve for V_0 .
 $i_{left} = \frac{i_{s1} R_1 - V_n}{R_1 + R_2} = \frac{V_n - V_0}{R_3} = i_{right}$
or
 $V_0 = -(i_{s1} R_1 - V_n) \frac{R_3}{R_1 + R_2} + V_n \frac{R_3}{R_1 + R_2}$
or
 $V_0 = V_n \frac{R_1 + R_2}{R_1 + R_2} + \frac{V_n R_3}{R_1 + R_2} - \frac{i_{s1} R_1 R_3}{R_1 + R_2}$
or
 $V_0 = V_n \frac{R_1 + R_2 + R_3}{R_1 + R_2} - \frac{i_{s1} R_1 R_3}{R_1 + R_2}$
(where V_n formula is given earlier)

b)

We have
$$v_n = is_2 \frac{R_1 R_2}{R_1 + R_2 + R_3}$$

and $v_o = is_2 \frac{R_1 R_3}{R_1 + R_2} - is_1 \frac{R_1 R_3}{R_1 + R_2}$
or
 $v_o = (is_2 - is_1) \frac{R_1 R_3}{R_1 + R_2}$
Note that we obtain the above
before we even begin substituting
for icm and idm.
Since idm = $is_2 - is_1$, we have
 $v_o = idm \frac{R_1 R_3}{R_1 + R_2}$