Ex:

The voltage source in the above circuit is off for t > 0.

- a) Find a symbolic expression for the Laplace-transformed output, $V_0(s)$, in terms of not more than R_1 , R_2 , R_3 , L, C, and values of sources or constants.
- b) Choose a numerical value for R_2 to make

 $v_1(t) = v_m e^{-\alpha t} \cos(\beta t)$

where v_m , α , and β are real-valued constants.

sol'n: a) No current flows into the op-amp inputs. Thus, current flowing toward the - input from the left will flow through Rg (and into the op-amp then into the tor power supply connections to the op-amp [which are not shown] then through the t or - power supply and back to the reference on the bottom rail [which was not shown]).

> Since the op-amp has negative feedback, we expect that $v_{-} = v_{+}$ at the op-amp inputs. In other words, $v_{-} = v_{+} = 0V$, and we have a virtual ground (or reference) at the - input of the op-amp.

We can find $V_o(s)$ from current, II(s), flowing toward the - input of the op-amp.

We have $V_o(s) = -I(s) R_3$.

To find II(s), we may treat the - input as reference.

First, however, we find initial conditions for the L and C.

t=0: $v_s(t) = 6V$, C = open, L = wire

We move to t>0 and include initial conditions on C. $V_{s}(t) = 0$ V = wire for t>0.

We have $II(s) = -\frac{6V}{s} \frac{1}{5L + R_1 + R_2 + \frac{1}{5C}}$

or
$$I(s) = \frac{-6V/L}{s^2 + \frac{R_1 + R_2}{L} s + \frac{1}{LC}}$$

So $V_0(s) = -I(s)R_3$
 $V_0(s) = \frac{6VR_3/L}{s^2 + \frac{R_1 + R_2}{L} s + \frac{1}{LC}}$

b) $V_1(s)$ is the same as the V-drop across L and R_2 .

$$V_{1}(s) = I(s) (sL + R_{2})
 or
 V_{1}(s) = -(6V/L)(sL + R_{2})
 s^{2} + \frac{R_{1} + R_{2} + 1}{L}
 or
 V_{1}(s) = -6V + \frac{s + R_{2}/L}{s^{2} + \frac{R_{1} + R_{2} + 1}{L}}$$

From the form of
$$v_i(t)$$
 given in the
problem, we have another form for
 $V_i(s)$:
 $V_i(s) = \mathcal{K} \{ v_m e^{\alpha t} \cos(\beta t) \}$
 $V_i(s) = v_m \frac{s+\alpha}{(s+\alpha)^2 + \beta^2}$
 $V_i(s) = v_m \frac{s+\alpha}{s^2 + 2\alpha s + \alpha^2 + \beta^2}$

Matching coefficients of the powers of s in the two forms of $V_i(s)$, we have the following equations:

$$R_2/L = \alpha$$
, $\frac{R_1 + R_2}{L} = 2\alpha$, $\frac{1}{LC} = \alpha^2 + \beta^2$

We have $R_2 = \alpha = \frac{R_1 + R_2}{2L}$. The solution is $R_2 = R_1 = 2k \cdot R_2$. $R_2 = 2k \cdot R_2$