Ex:

The voltage source in the above circuit is off for $t>0$.
a) Find a symbolic expression for the Laplace-transformed output, $\mathbf{V}_{\mathrm{o}}(s)$, in terms of not more than $R_{1}, R_{2}, R_{3}, L, C$, and values of sources or constants.
b) Choose a numerical value for R_{2} to make

$$
v_{1}(t)=v_{m} e^{-\alpha t} \cos (\beta t)
$$

where v_{m}, α, and β are real-valued constants.
Sol'n: a) No current flows into the op-amp inputs. Thus, current flowing toward the - input from the left will flow through R_{3} (and into the op-amp then into the 4 or power supply connections to the op-amp [which are not shown] then through the + or - power supply and back to the reference on the bottom rail [which was not shown]).

Since the op-amp has negative feedback, we expect that $v_{-}=v_{+}$at the op-amp inputs. In other words, $v_{-}=v_{+}=0 V$, and we have a virtual ground (or reference) at the - input of the op-amp.

We can find $V_{0}(s)$ from current, $\mathbb{I}(s)$, flowing toward the - iapat of the op-amp.

We have $V_{0}(s)=-\mathbb{I}(s) R_{3}$.
To find $I \mathbb{(s)}$, we may treat the - input as reference.

First, however, we find initial conditions for the L and C.

$$
t=0^{-}: v_{s}(t)=6 \mathrm{~V}, \mathrm{C}=\text { open, } L=\text { wire }
$$

We move to $t>0$ and include initial conditions on C. $V_{S}(t)=0 V=$ wire for $t>0$.

We have $I(S)=-\frac{6 V}{S} \frac{1}{S L+R_{1}+R_{2}+\frac{1}{S C}}$
or $\quad \Pi(s)=\frac{-6 V / L}{s^{2}+\frac{R_{1}+R_{2}}{L} s+\frac{1}{L C}}$
So $\quad V_{0}(s)=-I I(s) R_{3}$

$$
V_{0}(s)=\frac{6 V R_{3} / L}{s^{2}+\frac{R_{1}+R_{2}}{L} s+\frac{1}{L C}}
$$

b) $V_{1}(s)$ is the same as the V-drop across L and R_{2}.

$$
V_{1}(s)=\mathbb{I}(s)\left(s L+R_{2}\right)
$$

or

$$
V_{1}(s)=\frac{-(6 V / L)\left(s L+R_{2}\right)}{s^{2}+\frac{R_{1}+R_{2}}{L} s+\frac{1}{L C}}
$$

$$
V_{1}(s)=-6 V \frac{S+R_{2} / L}{s^{2}+\frac{R_{1}+R_{2}}{L} s+\frac{1}{L C}}
$$

From the form of $v_{l}(t)$ given in the problem, we have another form for

$$
\begin{aligned}
V_{1}(s)=V_{1}(s) & =\mathcal{L}\left\{v_{m} e^{-\alpha t} \cos (\beta t)\right\} \\
V_{1}(s) & =v_{m} \frac{s+\alpha}{(s+\alpha)^{2}+\beta^{2}} \\
V_{1}(s) & =V_{m} \frac{s+\alpha}{s^{2}+2 \alpha s+\alpha^{2}+\beta^{2}}
\end{aligned}
$$

Matching coefficients of the powers of S in the two forms of $V_{1}(N)$, we have the following equations:

$$
R_{2} / L=\alpha, \quad \frac{R_{1}+R_{2}}{L}=2 \alpha, \quad \frac{1}{L C}=\alpha^{2}+\beta^{2}
$$

We have $\frac{R_{2}}{L}=\alpha=\frac{R_{1}+R_{2}}{2 L}$. The solution is $R_{2}=R_{1}=2 k \Omega$.

$$
R_{2}=2 \mathrm{k} \Omega
$$

