Ex:

Use Kirchhoff's laws to find the value of v_{1} and i_{2}.
Sol'n: A voltage loop on the right side yields the value of v_{1} :

$$
v_{1}-15 \mathrm{~V}=0 \mathrm{~V} \Rightarrow \mathrm{v}_{1}=15 \mathrm{~V}
$$

Note that this loop proceeded in a clockwise direction, starting from the lower right. The sign of each voltage drop is determined by the + or voltage symbol seen as the path exits a component.

A current sum at the top center node yields the value of i_{2} :

$$
-30 \mathrm{~mA}+5 \mathrm{~mA}+i_{2}=0 \mathrm{~V} \Rightarrow i_{2}=25 \mathrm{~mA}
$$

Note that this is the sum of the currents flowing away from the top center node.

Note also that a current sum for the bottom center node yields the same value for i_{2}. This follows because the three currents are actually the same three currents flowing away from the top center node (but of the opposite sign).

