Ex:

Find the value of total resistance between terminals \mathbf{a} and \mathbf{b}.

SoL'n: \quad The 20Ω and 30Ω resistors are in parallel:

$$
20 \Omega\|30 \Omega=10 \Omega \cdot 2\| 3=10 \Omega \cdot \frac{2 \cdot 3}{2+3}=10 \Omega \cdot \frac{6}{5}=12 \Omega
$$

We replace the 20Ω and 30Ω resistors with a single 12Ω resistor, leaving three resistors in series, whose values sum:

$$
R_{\mathbf{a b}}=24 \Omega+13 \Omega+12 \Omega=49 \Omega
$$

