Ex:

a) Calculate i_{1}, i_{2}, and v_{0}.
b) Find the power dissipated for every component, including the voltage source.

Sol'n: a) we first label voltage and current for each resistor.

Starting with voltage loops, we have the following equations:
v-loop on left: $+12 V-v_{1}=O V$ or $v_{1}=12 \mathrm{~V}$
This means that a resistor across a voltage source has that voltage drop across it.
v-loop on right: $+v_{1}-v_{3}-v_{0}-v_{2}=O V$
This loop is in the dockaise direction.

Since we have efts for the two inner loops, the outside v-loop would be redundant.

Now we consider i-sums at nodes.

At the top center node, we discover that we Lack a current for the $R V$ source. If we define a current for the voltage source, we add another unknown and another ef'n. Consequently, this gets as no closer to solving for the currents and voltages. Thus, we avoid writing a current-sum ef'n for the top center node.

The same argument applies to the bottom tenter node. Thus, this problem requires no current-sum egos.

The next step is to equate currents in series components. Here, the same current must flow in $1 \Omega, 3 \Omega 2$, and 2Ω resistors:

$$
i_{3}=i_{0} \pm i_{2}
$$

From this point forward, we use i_{2} in place of is and i_{0}. Note: if we look for such series currents at the outset, then we may eliminate some currents immediately.

Last.; we are Ohm's law.

$$
\begin{aligned}
& v_{1}=i_{1} \cdot 12 \Omega \quad \text { or } 12 v=i_{1} \cdot 12 \Omega \Rightarrow i_{1}=\frac{12 V}{12 \Omega}=1 A \\
& v_{0}=i_{2} \cdot 3 \Omega \\
& v_{2}=i_{2} \cdot 2 \Omega \\
& v_{3}=i_{2} \cdot 1 \Omega
\end{aligned}
$$

Note that wee dan solve for v_{1} and i_{1} separately. This will happen whenever we have different parts of the circuit that are connected in parallel directly across a v-source.

For right side of the circuit, we can substitute the ohm's law expressions into the voltage efin and solve for i_{2} :

$$
\begin{gathered}
V_{1}-v_{3}-v_{0}-v_{2}=o v \\
\text { or } 12 V-i_{2} \cdot 1 \Omega-i_{2} \cdot 3 \Omega-i_{2} \cdot 2 \Omega=\text { on } \\
\text { or } i_{2}(1 \Omega+3 \Omega+2 \Omega)=12 V \\
\text { or } i_{2}=\frac{12 V}{1 \Omega+3 \Omega+2 \Omega}=\frac{12 V}{6 \Omega}=2 A \\
i_{2}=2 A
\end{gathered}
$$

For vo, we use Ohm's Law:

$$
v_{0}=i_{2} \cdot 3 \Omega=2 A \cdot 3 \Omega=6 V .
$$

b) power $=i \cdot v$

For resistors, $p=i v=i^{2} R=\frac{v^{2}}{R}$.

$$
\begin{aligned}
& P_{12 \Omega}=i_{1}^{2} \cdot 12 \Omega=(1 A)^{2} \cdot 12 \Omega=12 \mathrm{~W} \\
& P_{1 \Omega}=i_{2}^{2} \cdot 1 \Omega=(2 A)^{2} \cdot 1 \Omega=4 \mathrm{~W} \\
& P_{3 \Omega}=i_{2}^{2} \cdot 3 \Omega=(2 A)^{2} \cdot 3 \Omega=12 \mathrm{~W} \\
& P_{2 \Omega}=i_{2}^{2} \cdot 2 \Omega=(2 A)^{2} \cdot 2 \Omega=8 \mathrm{~W}
\end{aligned}
$$

Total R purr $=36 \mathrm{~W}$
For the $12 V$ source, we need the current. Now that we have solved the circuit, we can use Kirchhoff's' laws to find the durrent. Using a current source for the top center node, we have the following eff:

$$
\begin{aligned}
& i_{12 v}+i_{1}+i_{2}=O A \\
& \underbrace{ \pm}_{i 2}=-\left(i_{1}+i_{2}\right)=-(1 A+2 A)=-3 A
\end{aligned}
$$

So $\quad r_{t 2 v}=-34 \cdot 12 V=-36 \mathrm{~W}$
Total power for circuit is $-36(t)+36 w=0 W$.
Note: a negative power means a source is supplying power:

