1.

Calculate v_1 .

2.

3.

Derive an expression for i_1 . The expression must contain no other parameters than i_a , R_1 , R_2 , R_3 , and α . Note: $\alpha < 0$. (Hint: It is not just a voltage or current divider.)

- a) Derive an expression for v_3 containing not more than circuit parameters v_a , i_a , R_1 , R_2 , and R_3 .
- b) Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_0 in terms of not more than i_a , v_a , R_1 , R_2 , and R_3 .

5.

Answers:

- 1. -3 V
- 2. 30 mA (what tool can you use?)
- 3. Hint: you need a voltage loop and a current summation
- 4. You can ignore R1. Why? $v_3 = -v_a \frac{R_3}{R_2 + R_3} + i_a \frac{R_2 R_3}{R_2 + R_3}$
- 5. Hint: *R*'s in series with a current source may be ignored (usually). Also, the voltage drop from the input to the + input is 0 V. Use a v-loop on the right side.