1.

Calculate v_{1}.
2.

Calculate i_{1}.
3.

Derive an expression for i_{1}. The expression must contain no other parameters than i_{a}, R_{1}, R_{2}, R_{3}, and α. Note: $\alpha<0$. (Hint: It is not just a voltage or current divider.)
4.

a) Derive an expression for v_{3} containing not more than circuit parameters $v_{\mathrm{a}}, i_{\mathrm{a}}$, R_{1}, R_{2}, and R_{3}.
b) Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.
5.

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_{O} in terms of not more than $i_{\mathrm{a}}, v_{\mathrm{a}}, R_{1}, R_{2}$, and R_{3}.

Answers:

1. -3 V
2. $\quad 30 \mathrm{~mA}$ (what tool can you use?)
3. Hint: you need a voltage loop and a current summation
4. You can ignore R1. Why? $v_{3}=-v_{\mathrm{a}} \frac{R_{3}}{R_{2}+R_{3}}+i_{\mathrm{a}} \frac{R_{2} R_{3}}{R_{2}+R_{3}}$
5. Hint: R 's in series with a current source may be ignored (usually). Also, the voltage drop from the - input to the + input is 0 V . Use a v-loop on the right side.
