Ex:

a) Derive an expression for v_{3} containing not more than circuit parameters $v_{\mathrm{a}}, i_{\mathrm{a}}$, R_{1}, R_{2}, and R_{3}.
b) Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.

SoL'N:

(a) V-loop: (1) $+i_{2} R_{2}+V_{a}+V_{3}=0$

Current Summation at (2)
$-i_{2}+i_{3}-i_{2}=0$
(3) $i_{2}=i_{3}-i_{2}$

$$
\text { A. LaW: } \quad V_{3}=i_{3} R_{3}
$$

(4) $i_{3}=\frac{V_{3}}{R_{3}}$
plug (4) into (3) $\Rightarrow i_{2}=\frac{V_{3}}{R_{3}}-i_{2}$

b) A consistency check is accomplished by making certain component values zero, in order to simplify the circuit enough that it may be solved by inspection. The zero values are then substituted into the solution given by the complete formula from (a) to verify that it yields the result found by inspection. If enough such checks are performed and are passed, then the solution in part (a) is probably correct.

There are many possible checks. For example, if we set R_{3} to zero, it becomes a wire with no voltage drop. Thus, the answer for V_{3} must be zero. For the complete solution, we would get the following calculation:

$$
v_{3}=\frac{\left(i_{a} R_{2}-v_{a}\right) R_{3}}{R_{2}+R_{3}}=\frac{\left(i_{a} R_{2}-v_{a}\right) \cdot 0}{R_{2}+R_{3}}=0 \text { solution verified }
$$

Another possible check is $v_{\mathrm{a}}=0$, which turns the v_{a} source into a wire that bypasses R_{1} and reduces the circuit to a current divider involving only i_{a}, R_{2}, and R_{3}. We can write down a formula for the current in R_{3} and then use Ohm's law to find v_{3} :

$$
\begin{aligned}
& i_{3}=\frac{i_{a} R_{2}}{R_{2}+R_{3}} \\
& v_{3}=i_{3} R_{3}=\frac{i_{a} R_{2}}{R_{2}+R_{3}} R_{3}
\end{aligned}
$$

If we plug $v_{\mathrm{a}}=0$ into the solution from (a) we get the same result, and the solution from is verified as satisfying this special case.

Yet another possible check is $i_{\mathrm{a}}=0$, which turns the i_{a} source into an open circuit, leaving v_{a} across R_{2}, and R_{3} and forming a voltage divider. (Notice that R_{1} is a second circuit across the v_{a} source that may be solved
separately.) Using a voltage divider formula, we have the following value for v_{3} :

$$
v_{3}=\frac{v_{a} R_{3}}{R_{2}+R_{3}}
$$

If we plug $i_{\mathrm{a}}=0$ into the solution from (a) we get the same result, and the solution from is again verified as satisfying this special case.

