1.

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_{o} in terms of not more than $v_{\mathrm{a}}, i_{\mathrm{a}}, R_{1}, R_{2}$, and R_{3}.
2.

Find the absolute voltages at all the labeled nodes in the above circuit.
3.

a) Find the value of current, i_{1}, for each of the above circuits.

b) Find the value of current, i_{1}, for each of the above circuits.
4.

Use the node-voltage method to find $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3}.
5.

For the circuit shown, write three independent equations for the node-voltages, v_{1}, v_{2}, and v_{3}. The quantity v_{x} must not appear in the equations. Only component and source names may appear in answer.

Answers:

1. $v_{\mathrm{O}}=\left(1+\frac{R_{3}}{R_{2}}\right) \cdot\left(\mathrm{V}\right.$ across i_{a} [+ on top] $)$
2. $v_{2}=14 \mathrm{~V}$
3.a) $i_{1}=-10 \mathrm{~mA}$ for middle circuit, put R's together in 3rd circuit
3.b) How much current flows in an open? What do we do with things in series with current source?
3. Equation for supernode v2 and v1 is: $-200 \mu \mathrm{~A}+\frac{v_{1}}{47 \mathrm{k} \Omega}+\frac{v_{2}-v_{3}}{10 \mathrm{k} \Omega}+\frac{v_{2}}{20 \mathrm{k} \Omega}=0 \mathrm{~A}$

Also need voltage equation for supernode and current sum for v3 node. vx in erms of node V's is just v1-v3.
5. First write equation for v_{x} in terms of node V 's: $v_{\mathrm{X}}=\left(v_{3}-v_{2}\right) \frac{R_{5}}{R_{4}+R_{5}}$ Supernode equation for v1 and v2: $\frac{v_{1}}{R_{1}}+\frac{v_{1}+v_{s}-v_{2}}{R_{3}}+\frac{v_{2}-v_{3}}{R_{4}+R_{5}}+$ two more terms $=0 \mathrm{~A}$
Also need to write voltage equation for $v 1$ and $v 2$ (they differ by $v x$, but use the node voltage version of vx) and current sum for v 3 node.

