2.

Find the Thevenin equivalent circuit at terminals a-b.

Find the Thevenin equivalent circuit at terminals a-b. v_x must not appear in your solution. The expression must not contain more than circuit parameters α , R_1 , R_2 , R_3 , and i_s . Note: $0 < \alpha < 1$.

- 3. Make at least one consistency check (other than a units check) on your expression for problem 2. In other words, choose component values that make the answer obvious, and verify that your answer to problem 2 gives that obvious answer. State the values of resistors and sources for your consistency check.
- 4. Find the Norton equivalent of the circuit in problem 2.

- a) Calculate the value of $R_{\rm L}$ that would absorb maximum power.
- b) Calculate that value of maximum power $R_{\rm L}$ could absorb.

Answers:

- 1. $v_{\rm Th} = 10.5 \,\rm V$, $R_{\rm Th} = 2.25 \,\rm k\Omega$
- 2. $v_{\text{Th}} = i_{\text{s}} \cdot (R_1 + R_2) \parallel R_3 \parallel \frac{-R_3}{\alpha} = i_{\text{s}} \cdot R_{\text{Th}}$
- 5.a. Hints: Remove $R_{\rm L}$ when finding the Thevenin equivalent, and 20 Ω resistor in series with current source is irrelevant. So if you combine the 40 Ω and 60 Ω , you are starting with a Norton form.

5.b.
$$p_{\text{max}} = \frac{v_{\text{Th}}^2}{4R_{\text{Th}}} = 24 \text{ W}$$