1.

Using superposition, derive an expression for v_{1} that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{S}}, R_{1}, R_{2}, R_{3}$, and β, where $\beta<0$.
2. In (a)-(c), the voltage $v_{\mathrm{C}}(t)$ across a $0.2 \mu \mathrm{~F}$ capacitor is listed. Find the current, $i_{\mathrm{C}}(t)$, flowing in the capacitor in each case as a function of time:

a) $\quad v_{C}(t)=3 \mathrm{~V}$
b) $v_{C}(t)=1000 t \mathrm{~V} / \mathrm{s}$
c) $v_{C}(t)=1-e^{-t / 4 \mathrm{~ms}} \mathrm{~V}$
3. In (a)-(c), the current $i_{\mathrm{L}}(t)$ flowing into a 0.5 mH inductor is listed. Find the voltage, $v_{\mathrm{L}}(t)$, across the inductor in each case as a function of time:

a) $\quad i_{L}(t)=5 \mathrm{~mA}$
b) $i_{L}(t)=5 t \mathrm{~mA} / \mathrm{s}$
c) $i_{L}(t)=5 \sin (2 \pi \cdot 100 t) \mathrm{mA}$
4. The following equation describes the voltage, v_{C}, across a capacitor as a function of time. Find the time, t, at which v_{C} is equal to 2 V .

$$
v_{C}(t)=1+3\left(1-e^{-t / 8 \mathrm{~ms}}\right) \mathrm{V}
$$

5. The following equation describes the voltage, v_{L}, across an inductor as a function of time. Find an expression for the current, $i_{\mathrm{L}}(t)$, through the inductor as a function of time. Assume that $i_{\mathrm{L}}(t=0)=0 \mathrm{~A}$ and $L=10 \mathrm{mH}$.

$$
v_{L}(t)=2+6\left(1-e^{-t / 12.5 \mu \mathrm{~s}}\right) \mathrm{kV}
$$

Answers:

1. $v_{1}=\left(1-\frac{\beta}{R_{2}}\right) \frac{i_{\mathrm{s}} R_{2} R_{3}}{R_{2}+R_{3}-\beta}+\frac{v_{\mathrm{s}} R_{3}}{R_{2}+R_{3}-\beta}$
2.c. $i_{C}=50 \mu \mathrm{~A} e^{-t / 4 \mathrm{~ms}}$
3.c. $v_{L}=\frac{\pi}{2} \cos (2 \pi \cdot 100 t) \mathrm{mV}$
2. $t=3.24 \mathrm{~ms}$
3. Hint: $i_{L}(t)=\frac{1}{L} \int_{0}^{t}\left[2+6\left(1-e^{-t / 12.5 \mu \mathrm{~s}}\right) \mathrm{kV}\right] d t+0 A$ and compute the integral
